Archivos de Autor: Hogarsense

¿Placas solares fotovoltaicas o térmicas?

La principaººl diferencia entre las placas solares fotovoltaicas y térmicas es para que están destinadas. Mientras que los paneles fotovoltaicos están destinados a generar electricidad, que usaremos en cualquier electrodoméstico de nuestro hogar, o en nuestro vehículo eléctrico. Los térmicos generan agua caliente que podremos usar en la ducha, lavar la vajilla o la ropa, o incluso, para la calefacción de casa. Pero no sólo eso, sino que también existen otra serie de aspectos con los podemos diferenciar una de la otra.

1.Funcionamiento

Placa solar térmica

Aunque para la función térmica existen diferentes tipos de captadores, vamos a explicar el funcionamiento de los más comunes. El panel solar térmico o captador solar es un dispositivo que capta la energía de la radiación solar para su aprovechamiento en calefacción o agua caliente sanitaria. Su funcionamiento es muy sencillo. Consiste en hacer pasar un líquido con propiedades anticongelantes por su interior. En su recorrido por el interior del captador, este líquido, también llamado glicol, va aumentando su temperatura gracias a la incidencia de los rayos del sol. Y a su vez, a la configuración de los propios paneles, que potencian la acumulación de calor por el efecto invernadero. Una vez fuera del captador, el glicol cederá ese calor al agua sanitaria o para la calefacción, mediante intercambiadores individuales, o dentro de acumuladores de agua.

Ejemplo de instalación en una vivienda tipo:

Placa fotovoltaica

La placa fotovoltaica es el que sirve para la generación de electricidad. Gracias al decreto ley de finales del año 2018, por el que se suprimía el llamado “impuesto al sol” vuelve a ponerse de moda. Los paneles o módulos fotovoltaicos están formados por un conjunto de células fotovoltaicas que producen electricidad a partir de la luz (de los fotones de la radiación solar) que incide sobre ellos mediante el efecto fotoeléctrico.

Su funcionamiento se rige por los siguientes principios físicos. Algunos de los fotones, provenientes de los rayos del sol, impactan sobre la primera superficie del panel, siendo absorbidos por diversos semiconductores, como puede ser el silicio. Los electrones que se alojan en la estructura del silicio son golpeados por los fotones, liberándose de los átomos a los que principalmente estaban destinados. El movimiento de esto electrones es lo que conocemos como corriente eléctrica. Generada en forma “continua” y también llamada DC. Y que debemos transformar a “alterna” para poder usarla en nuestras casas.

Y en función del tipo de célula que los forman, los paneles fotovoltaicos se dividen en, monocristalinas, que se componen de secciones de un único cristal de silicio (Si) (reconocibles por su forma circular u octogonal, donde los 4 lados cortos, si se puede apreciar en la imagen, se aprecia que son curvos, debido a que es una célula circular recortada). Policristalinas, formadas por pequeñas partículas cristalizadas. Y amorfas: cuando el silicio no se ha cristalizado.

¿Cuál es su rendimiento?

Su efectividad es mayor cuanto mayores son los cristales, pero también su peso, grosor y costo. El rendimiento de las primeras puede alcanzar el 22%​ mientras que el de las últimas puede no llegar al 10 %.  Los paneles fotovoltaicos pueden llegar a generar gran cantidad de energía, pudiendo llegar a generar entre 120 y 250 w por metro cuadrado. Siempre dependiendo del tipo de panel y de su nivel de eficiencia.  Además, los sistemas fotovoltaicos pueden funcionar de forma aislada. Cuando lo que queremos es dotar de electricidad a una vivienda aislada en el campo, a la que es difícil llevar el tendido eléctrico, o con conexión a la red. La instalación tipo de cada una de los dos tipos se puede observar en el siguiente gráfico.

Ejemplo de instalación en una vivienda tipo:

2.Aspecto visual

Para las personas que no reconozcan por su aspecto las placas solares fotovoltaicas de las térmicas, ya que en apariencia ambos tipos son de un color oscuro, azulado o incluso negras, les explicamos como se pueden diferenciar. Las placas solares fotovoltaicas están formadas por celdas fotovoltaicas que se fabrican a partir de un cristal de silicio, y estas suele tener forma cuadrada, con un tamaño de unos 20 centímetros de lado. De forma que, al juntarse estas celdas para fabricar la placa solar, crean un aspecto cuadriculado como de tela escocesa, aunque de color oscuro.

Fuente de la imagen: Fotolia

En cambio, las placas solares térmicas, en su fabricación se dispone de un tubo que recorre su interior, pero visible a través del cristal, normalmente en la dirección más larga. Y aunque se pintan del mismo color que el fondo, se suelen apreciar unas rallas longitudinales dispuestas a la misma distancia unas de otras. Esas rayas son el tubo de cobre que recorre el interior de la placa, y por el que circula el fluido caloportador.

3. Tamaño

Otra forma de reconocerlas visualmente es por su tamaño. Aunque no sea mucha la diferencia, normalmente las placas solares térmicas son un poco más grandes que las fotovoltaicas. Y quizás sea una diferencia que si las vemos por separado no podamos apreciar, cuando se da la casualidad que en una vivienda están los dos tipos instaladas, con en la foto anterior, se puede apreciar la diferencia de tamaño.

4. Conexión

Para la instalación de  placas solares fotovoltaicas solo se necesitan un par de cables eléctricos que conectan las placas con el inversor que está dentro de la vivienda, por lo que normalmente se verá un tubo que sirve de protección a los cables eléctricos. Como los que podemos ver por las fachadas de muchas casas o edificios. En cambio, para las placas solares térmicas, su conexión con el resto de instalación que está dentro de la vivienda, se necesita llevar dos tubos de cobre u otro material y los cables de las sondas y termostatos. Por ello se suele ver que esa conexión es más aparatosa, ya que dichos tubos se aíslan con unas vainas de material normalmente negro, y que hace que esas tuberías sean más gruesas y se puedan ver más fácilmente.

Características de las placas solares

Característica Fotovoltaica Térmica
Función ✓Generar de electricidad ✓ Calentar agua
Uso ✓ Autoconsumo

✓ Venta de electricidad

✓ Agua caliente sanitaria

✓ Calefacción vivienda

✓ Calefacción piscina

✓ Generación eléctrica (central termoeléctrica)

Vida útil ✓ 30 años aprox. ✓ 20 a 25 años aprox.
Instalación: ✓ Más sencilla que la térmica. ✓ Algo más compleja, por funcionar con líquidos que aumentan su presión y temperatura durante el funcionamiento.
Mantenimiento ✓ Nulo o mínimo. ✓ Revisión periódica necesaria.

✓ Reposición de elementos deteriorados.

Tamaño

más comunes

✓ 1.58 x 0.81 m (190 – 215 Wp)

✓ 1.65 x 1.00 m (245 – 270 Wp)

✓  2.00 x 1.00 m (270-300 Wp)

Área de apertura:

✓ 2,35 m2

✓  2,11 m2

✓  2 m2

✓  1 m2

Disposición ✓ Indistinta (vertical u horizontal). ✓ Se fabrican para disposición en vertical o en horizontal, dependiendo donde tengan las tomas para las tuberías.
Componente tecnológico: ✓ Implican un mayor esfuerzo en tecnología.

✓ Existen pocos fabricantes del sustrato semiconductor para fabricar las celdas fotovoltaicas.

✓ Tecnología relativamente sencilla.

Calefacción y ACS solar para la vivienda

Calefacción y calentador solar

Para instalar y utilizar una calefacción solar tenemos dos alternativas. La primera y mas conocida es utilizando placas solares térmicas, con la que calentamos agua que utilizaremos tanto para usos domésticos (lavar, ducharnos, etc.) como para la calefacción, bien sea por suelo radiante, por radiadores de baja temperatura, o para los fancoils.

En la actualidad el número de las instalaciones de los paneles solares térmicos en España está teniendo un gran aumento, ya que es una de las principales formas para obtener la energía que es necesaria en las viviendas. La mayoría de las instalaciones solares son a través de paneles térmicos. Sin duda alguna, una ventaja que debemos tener en cuenta, no solamente en viviendas de nueva construcción, sino en el reemplazo de instalaciones que deriven en costes innecesarios. Sin olvidar que no contribuyan con el cuidado del medio ambiente.

Otra alternativa, es utilizar placas solares fotovoltaicas. Con ellas generamos electricidad que podremos utilizar en un equipo de aerotermia o bomba de calor para calentar agua. Este agua calentada gracias a la electricidad de las placas fotovoltaicas, la usaremos para un suelo radiante, por ejemplo. Pero otra alternativa es usar la electricidad de las placas fotovoltaicas para los equipos de aire acondicionado, con la ventaja que estos equipos pueden funcionar también en modo invierno y darnos también aire caliente.

Energía: producción y consumo

Todos sabemos que la energía que proviene del sol es, sin duda, una de las energías renovables más importantes que existen en la actualidad. Este tipo de energía se presenta en Europa, y a nivel mundial como una de las alternativas más sostenibles, si hablamos de la producción. Este es un hecho conocido pero, ¿qué nuevas aplicaciones damos a una de las energías renovables más importantes de nuestra vida? Si tenemos en cuenta que Greenpeace estima que la energía solar fotovoltaica podrá suministrar electricidad a dos tercios de la población en 2030, y que el Consejo Mundial de Energía cree que el año 2100 el 70 % de la energía consumida será de origen solar.

Así que no está de más repasar algunas de las aplicaciones más provechosas de esta renovable. La UE fomenta activamente la evolución de Europa hacia una sociedad con bajas emisiones de carbono. Además, actualiza su normativa para facilitar las inversiones públicas y privadas que requiere la transición hacia las energías limpias. Este proceso debe ser positivo para el planeta, así como resultar beneficioso para la economía y los consumidores.

Ventajas del calentador solar

1. Equipo que utiliza la energía solar que llega a la superficie terrestre, para calentar agua.

2. Ayuda a disminuir el consumo energético utilizado para calentar agua. Esta disminución puede llegar a ser de entre el 50% y el 75 %, o incluso hasta el 100 % si se sustituye completamente.

3. Los calentadores alimentados por una placa fotovoltaica o los térmicos, o también conocidos como termosifones. Pero en los que se puede intercambiar los captadores solares térmicos de placa plana por los de tubos de vacío. También podemos contemplar los sistemas termo-solares forzados. Aunque estos últimos calentadores solares son más comunes para las instalaciones de calefacción, o para combinarlos con equipos de absorción.

4. Contar con un calentador solar fotovoltaico es el ahorro energético que conseguimos. Al aprovechar la energía del sol, evitamos consumir electricidad, gas u otro combustible, por los que no pagamos nada por encender el calentador solar y tener agua caliente.

5. Suministra de agua caliente para el hogar 365 días al año, es fácil de utilizar, con una tecnología sencilla y mínimos costes de mantenimiento.

6. Estos sistemas dan la posibilidad de conectar los paneles fotovoltaicos a otros aparatos que funcionen a corriente continua, o llamado también autoconsumo. Tienen una instalación sencilla y económica, y pueden funcionar en un sistema desconectado de la red eléctrica.

7. Facilidad de instalación y funcionamiento. Ya que el bajo peso de los paneles fotovoltaicos le permite colocarlos en cualquier lugar y disposición.

8. Sistemas respetuosos con el medio ambiente. Son sistemas híbridos, ya que en casos de poco sol pueden ser ayudados por sistemas tradicionales.

9. Algunos modelos ofrecen soluciones para la calefacción preliminar y final del agua en sistemas de agua caliente sanitaria (ACS). Estos calentadores de agua híbridos utilizan la energía solar, que es renovable y totalmente ecológica.

Ventajas de la calefacción solar

1. Sistema que nos permite aprovechar los rayos del sol.

2. Es gratuita, inagotable y no contaminante, ya que como energía primaria no produce gases de efecto invernadero.

3. Se sirve de paneles solares fotovoltaicos. Esta calefacción solar aprovecha la radiación solar, para transformarla en energía eléctrica. Proceso que se realiza mediante el efecto fotovoltaico.

4. Al aprovechar la energía solar, el consumo de electricidad, gas, gasóleo u otro tipo de combustible se reduce sensiblemente. No lo sustituimos por otro combustible que tengamos que pagar. Todo lo contrario, el sol se desprende de esa energía que es una lástima no aprovecharla.

5. Con la energía del sol para nuestra calefacción solar estamos consumiendo menos combustibles fósiles. Con esto reducimos las emisiones de CO2 y otros gases muy nocivos, que incrementan el efecto invernadero y pueden destruir la capa de ozono

¿Cómo es su producción en la época estival?

En verano se puede utilizar el calentador solar para calentar el agua de uso humano. Pero también podemos conectar equipos de aire acondicionado. Otra opción con placas solares térmicas es la conexión a un sistema de absorción para generar frío. El uso de placas solares fotovoltaicas para la generación de frío, se basa en la obtención de electricidad, que usaremos en un equipo de aire acondicionado. Este tipo de opción se usa en viviendas, pequeños comercios u oficinas, y por lo general para pequeñas estancias.

Paridad fotovoltaica

El concepto “paridad fotovoltaica” nos interesa a todos. Es un indicador que nos dice que los precios de la electricidad generada por una tecnología, en este caso la fotovoltaica, se han igualado con los precios de mercado. Este concepto no solo afecta a la energía fotovoltaica, sino a cualquier fuente de energía eléctrica, aunque se esta aplicando a aquellas que usan energías renovables. La paridad de red se define como el momento temporal en el que una fuente de energía produce electricidad a un coste igual o menor al precio de compra de energía en el mercado eléctrico. Alemania fue uno de los primeros países donde se alcanzó la paridad de red con las instalaciones fotovoltaicas en 2011 y 2012. Ya en 2014, 19 países en todo el mundo habían alcanzado la paridad de red fotovoltaica. Entre ellos España.

¿Qué es la paridad de red fotovoltaica?

Dando una definición más exacta de la paridad de red fotovoltaica, se considera que es el momento en el que las plantas fotovoltaicas como fuente de energía eléctrica es capaz de producir electricidad a un coste igual o menor que el precio generalista de compra de la electricidad directamente de la red eléctrica. Alcanzar la paridad de red, o en este caso la paridad fotovoltaica, se considera que es un punto de inflexión muy importante en el desarrollo de nuevas fuentes de energía. Ya que supone el momento o punto a partir del cual una fuente de producción de energía eléctrica puede convertirse en un directo competidor de las energías convencionales. Y puede llevar a cabo su desarrollo sin subsidios o apoyo de las administraciones.

La ley de Naam, base para establecer la paridad de red

Esta ley fue definida por el desarrollador informático y tecnólogo Ramez Naam, que dió a conocer en 2011 cómo el precio de la energía fotovoltaica se rebajaba a razón de un 7% al año desde 1980. La ley de Naam promedia a treinta años el precio de la energía fotovoltaica en función del precio de los paneles solares.

Hay dos motivos de esta constante reducción de los precios. Por un lado, los fabricantes de células solares están mejorando sus procesos y técnicas, de la misma forma que sucedió hace 30 años con los fabricantes de chips, lo que ayuda a reducir el coste de fabricación. Por otro lado, la eficiencia de la célula solar, es decir, la parte capturada y convertida en electricidad del total de la energía del sol está mejorando continuamente.

En este sentido. Un dato importante es que en el laboratorio se está llegando a eficiencias bastante altas, de hasta un 41%. Algo inaudito hace 30 años. Los métodos de película fina han obtenido eficiencias de laboratorio del orden del 20%, casi el doble de la mayoría de los sistemas solares instalados hoy en día. Esto significa que con la disminución del 7% que predice la ley de Naam, en menos de 10 años el coste de las células solares por kilovatio estará en unos pocos céntimos.

Evolución de la paridad de red en el mundo

A finales de 2015, y teniendo como base los datos recogidos por el informe del Deutsche Bank sobre “La paridad de red con precios bajos del petróleo”, toda Europa occidental, gran parte de EEUU, China, India, Australia y Brasil, por citar algunos países, se encontraban en situación de paridad de red. En 2018, con el nivel de costes actuales, el 80% de los países podrían haber estado en situación de paridad de red y, globalmente, se debería poder alcanzar en todo el planeta hacia el año 2020.

La paridad fotovoltaica a nivel global debería haberse cumplido ya, si el ritmo de instalación de placas fotovoltaicas fuese el mismo en todo el planeta. Pero desgraciadamente en países de África y Asía el ritmo es mucho menor. Además, debemos tener en cuenta que cuanto más nos alejamos del ecuador, los países disfrutan de menor cantidad de radiación solar, por lo que se necesitan más placas solares para conseguir el mismo resultado.

Como ya hemos indicado al principio varios países europeos ya ha llegado a la paridad de red. Alemania fue el primero en 2011, y en 2014 habían conseguido la paridad de red otros países como Francia, España, e Italia. Un estudio de la empresa BayWa r.e., comparó las previsiones futuras de los precios del mercado mayorista con la irradiación solar media de los diferentes países.  Al comprobar los datos, quedó claro que los proyectos solares podrían alcanzar la paridad de la red fotovoltaica y ser competitivos en la mayoría de los países europeos. De esta forma en el año 2019 se prevé que la paridad de red se extenderá a través de Europa Central, y luego continuará hacia el norte de Europa.

¿Qué son los puentes térmicos?

Puente térmico

Cuando hablamos de los puentes térmicos los asociamos a las envolventes de un edificio o vivienda. Puede ser una zona puntual o linear, en la que se transmite más fácilmente el calor que en las zonas de alrededor. Esta transmisión del calor se debe a una variación de la resistencia térmica, provocada por un cambio en el tipo de materia utilizado. Se trata de un lugar en el que al haber otro tipo de material, se rompe la superficie aislante. Un puente térmico puede aparecer por dos motivos principales, ya sea debido a un cambio en la geometría de la envolvente, o por un cambio de materiales o de resistencia térmica.

¿Qué pasa en las edificaciones modernas?

En lo que respecta a las edificaciones modernas, antes de hacerse común el aislamiento térmico de los edificios, los puentes térmicos representaban entre el 10 y el 20% de las pérdidas totales de calor. Avanzando en el tiempo, cuando empezamos a preocuparnos más por el aislamiento de nuestras viviendas, el porcentaje de pérdidas por los elementos planos bajó mucho, mientras que el de los puentes térmicos aumentó notablemente. En la actualidad, las normativas obligan a reducir la demanda y el consumo energético de los edificios. Por este motivo se buscan soluciones técnicas y arquitectónicas que mejoren este aspecto, o técnicamente hablando se busca la “rotura del puente térmico”. El Código Técnico de la Edificación (CTE), en su apartado ¡Ahorro de Energía!, obliga a soluciones constructivas para reducir al mínimo las pérdidas por los puentes térmicos.

Cálculo de un puente térmico

Para hacer el cálculo de un puente térmico debemos tener ciertos conocimientos de termodinámica. Por eso, el primer paso es diferenciar entre calcular y estimar. En muchas ocasiones, se estiman las pérdidas energéticas de los puentes térmicos utilizando tablas. Y algunas de esas tablas las podemos encontrar en el documento de apoyo del DB-HE del CTE. Y exponemos algunos ejemplos extraídos del mencionado documento.

En estos ejemplos, las tablas indican la Transmitancia Térmica del puente térmico. La transmitancia térmica es: “la medida del calor que fluye por unidad de tiempo y superficie, transferido a través de un sistema constructivo. Formado por una o más capas de material, de caras planas paralelas”.

1.Puentes térmicos en pilares de fachada con continuidad de aislamiento por exterior:

2. Puentes térmicos en pilares de fachada con continuidad de aislamiento por interior:

En los dos primeros casos el aislamiento es continuo, por lo que no afecta que el pilar este fuera o dentro de este aislamiento. Y por ello se utiliza la misma tabla.

3.Puentes térmicos en pilares de fachada sin continuidad de aislamiento:

4. Puentes térmicos en la unión de ventanas y paredes:

Importancia de su control: eficiencia energética y efectos negativos

Como ya hemos explicado, un puente térmico es un punto o zona donde se pierde el aislamiento o este es menor. Por ello la energía que nosotros empleamos en calentar o enfriar el interior de nuestra vivienda, se escapa más fácilmente por estos puntos. Una situación que nos debe preocupar por varios motivos.

1. Económicamente: el primero es el económico, ya que por estos puntos se esta escapando la temperatura que estamos consiguiendo con nuestro sistema de calefacción o el aire acondicionado.

2.Control de la humedad: es un punto donde condensara el vapor de agua del aire interior de la vivienda, produciendo humedad. Esta humedad es la responsable de un deterioro más rápido de esa zona. Así que, necesitaremos con más frecuencia de un mantenimiento (eliminación de la capa de material, reposición, pintura, etc.).

3. Medio Ambiente: no podemos olvidarnos del efecto negativo sobre el Medio Ambiente. Ya que si perdemos el calor o el frío que hemos conseguido con gas, gasóleo, o electricidad, se tendrá que generar más, consumiendo más energía. De un modo u otro va a afectar a la naturaleza.

¿Afectan los puentes térmicos a la demanda de calefacción y aire acondicionado en casa?

Los puentes térmicos son un punto en que el calor se transmite con mayor facilidad. Por ello, son puntos donde perderemos más fácilmente el calor o el frio que nuestro sistema de climatización ha tenido que generar. Por este motivo, en todos los ámbitos de la construcción y mejora de las viviendas, se estudia la forma de minimizarlo. Una forma de paliar este efecto y por consiguiente conseguir la rotura del puente térmico es introduciendo un material aislante en medio de las ventanas. ¿Cómo? En los cristales se han desarrollado conjuntos de 2 o 3 vidrios con una cámara intermedia, en la cual se ha hecho el vacío. Con esto se consigue que se transmita mucho menos calor de un lado de los cristales al otro.

Otra innovación que se ha hecho es en el material del perfil de la ventana. Antiguamente se utilizaba madera. La madera es de por sí un material aislante y por ello el efecto que causaba era mínimo, comparándolo con el vidrio simple que tenían las ventanas. Con la introducción de las ventanas metálicas, bien de hierro inicialmente, bien de aluminio, el efecto de la transmisión del calor se acentuó. Recordemos que todos los metales son muy buenos transmisores del calor. Para solucionar este problema los fabricantes implementaron un aislante de forma que se interrumpe el metal.

Además, dentro de las últimas innovaciones, encontramos la aparición del PVC con baja emisión de humos con halógenos. Al ser un material plástico tiene una baja transmisión del calor. Pero no sólo eso, sino que es un material clasificado como M1 que corresponde a un material no inflamable o difícilmente inflamable.

Passivhaus: ¿clave para la eliminación de los puentes térmicos?

La técnica de Passivhaus es mucho más exigente que el propio CTE. Ambos están orientados hacia edificios energéticamente eficientes. Pero el Passivhaus va más allá y busca que el edificio construido tenga un consumo mínimo de energía. Llegando a rangos inferiores a los 15 kW/m2•año en el consumo de la calefacción o aire acondicionado. Y los 120 kW/m2•año de energía primaria.

¿Sabías que los puentes térmicos son uno de los puntos más importantes que tiene en cuenta la técnica del Passivhaus?

Lo que intenta es minimizar al máximo los efectos perjudiciales de los estos. El objetivo ideal es intentar construir un edificio libre de puentes térmicos. ¿Cómo? El técnico debe estudiar muy detenidamente el contorno del edificio, puesto que la base de un buen diseño es el análisis de todos los cerramientos del edificio. En este sentido, resulta especialmente importante la continuidad de los mismos tanto en el interior de cada fachada como en todas las uniones con pilares, forjados, huecos, aleros, balcones, cubierta, etc.. De esta manera se asegura que el aislante mantiene la continuidad en toda la envolvente del edificio. Con esto conseguimos que no se deje nada a la improvisación en ningún punto conflictivo, asegurando la calidad de la ‘piel’ de la vivienda.

Energía solar termodinámica: alternativa energética

En estos días, donde las energías alternativas están cobrando un papel protagonista en el sector energético, el desarrollo de tecnologías de última generación, como ventanas o celdas o paneles solares termodinámicos, están aportando un valor añadido al mundo de las energías renovables tal y como lo conocemos. Y es que no debemos olvidar que 2020 va a suponer para España y toda Europa un cambio en relación a la eficiencia energética. Es el comienzo para alcanzar consumo energético casi nulo. Una nueva situación que afecta, en mayor medida, a los edificios con la nueva directiva de eficiencia energética establecida por la Unión Europa (EPBD). Una normativa con la que se espera un ahorro de energía de entre el 60% y el 80% en los nuevos edificios. Por ello el compromiso con el desarrollo de nuevas tecnologías, permite maximizar la calidad del sector. Así como el bienestar y habitabilidad del planeta. Un compromiso que podemos encontrar en la energía solar termodinámica.

¿Qué es la energía solar termodinámica?

La energía solar termodinámica es una evolución de la energía solar tradicional. Es un novedoso sistema que aprovecha la diferencia entre la temperatura del líquido que hay en los paneles termodinámicos y la temperatura ambiente. ¿Y cómo se produce esto? Los paneles solares termodinámicos llevan un líquido refrigerante a una temperatura muy baja que produce un intercambio de calor con la temperatura ambiente. Siempre y cuando no sea más baja que la del líquido refrigerante. Esto permite producir energía en cualquier momento del día. Es decir, tanto de noche como en condiciones climatológicas adversas, lluvia, viento, etc. Y es aportando agua caliente sanitaria, calefacción y soporte para piscinas. Así que al poder funcionar con diversas condiciones climatológicas, la instalación de un panel solar termodinámico no está limitada únicamente a regiones con muchas horas de sol. Todo un beneficio.

¿Sabías que las placas solares termodinámicas tienen un ahorro estimado de un 75% en el consumo eléctrico?

Además, su vida útil suele rondar los 25 años. Están fabricados generalmente en aluminio, por lo que su peso es bastante ligero. Alrededor de 8 kg. Es un material muy resistente a las variaciones de las temperaturas, así como a la abrasión y al desgaste. El precio de una instalación de un panel solar termodinámico suele estar entre los 1.500€ – 3.000€. Pero este puede variar según el número de paneles y la dificultad de la propia instalación.

Aplicaciones de la energía solar termodinámica

Para mantener una buena relación, la producción de energía solar térmica debe ser de 4 KW con un consumo de 1KW. Cuando la energía solar térmica se mantiene a un nivel similar al del consumo, no estamos logrando ahorro. Por este motivo, antes de llevar a cabo la instalación de un panel solar termodinámico, debemos tener en cuenta este aspecto y valorar si podremos generar la suficiente energía solar térmica para que sea rentable. No solo habrá que tener en cuenta la propia instalación, sino también, valorar la situación meteorológica en la zona en la que queramos aprovechar la energía solar termodinámica.

Cómo funciona la energía solar termodinámica

A primera vista, una instalación de este tipo parece similar a una instalación de paneles solares convencionales, si bien su modo de funcionamiento es completamente diferente y resultaría similar a un sistema de climatización por bomba de calor. En una instalación convencional de paneles solares circula un fluido que se calienta a su paso por los paneles debido a la incidencia directa de los rayos solares. Este tipo de energía solar aprovecha el calor para calentar agua. El agua es transformada después en vapor, que a su vez mueve unas turbinas. La acción de esas turbinas es lo que permite producir electricidad. No se produce electricidad directamente. Esta es una manera muy similar a cómo se obtiene energía eléctrica partiendo de la quema de combustibles fósiles. En este caso, no hace falta quemar nada para que se puedan mover las turbinas, el calor del sol lo hace y, además, al ser vapor de agua, no hay residuos nocivos de ninguna clase.

Importante en lo que se refiere a su funcionamiento

No hay que olvidar, que es necesaria una gran cantidad de calor para conseguir ese efecto y eso se consigue concentrando el calor del sol en unos puntos muy determinados. Por eso, no se usan paneles solares fotovoltaicos, que emplean un principio muy diferente, sino que se utilizan colectores de energía. Cuando éramos pequeños aprendimos en la escuela que, con una lupa y un día soleado, podíamos concentrar la energía del sol en un punto. En ese caso, conseguimos tal concentración de calor que se pueden incluso prender cosas que ardan. El funcionamiento de la energía solar termodinámica es, a grandes rasgos, lo mismo. El calor en este caso no se concentra sobre un punto para que arda, sino sobre lo que se llama un fluido termovector. Este fluido tiene unas excelentes capacidades de transmisión del calor y suele estar compuesto de agua y anticongelante. Después, entra en contacto con agua y produce el vapor que mueve las turbinas.

¿Qué beneficios tiene la energía solar termodinámica?

  • Mantenimiento: estas instalaciones necesitan un mantenimiento mínimo.
  • Gas refrigerante: no es necesario recargar periódicamente el gas refrigerante. Además, no es tóxico y las fugas son fácilmente detectables.
  • Menos control de funcionamiento: Los paneles no tienen que purgarse, ni ser cubiertos en verano para proteger la instalación contra sobrepresiones.
  • Efectivos 365 días: en invierno no se corre el riesgo de que los paneles se congelen.
  • Sin sistemas de apoyo: las instalaciones termodinámicas garantizan por sí mismas el 100% del suministro sin necesidad de calderas de apoyo.
  • Alta calidad de material: panel muy ligero (7,6 kg) y ultra plano (grosor 2 cms).
  • Fácil instalación: no necesita ningún tipo de obra ni refuerzo del tejado y se pueden utilizar por las dos caras. Además, la instalación se puede realizar en menos de 4 horas.
  • Duraderos: los materiales con los que están fabricados son anticorrosivos y pueden durar varias décadas, no tienen problemas de congelación ni de dilatación.
  • Eficiente: este sistema es un 20% más eficiente que los sistemas térmicos en el mercado. Capaz de trabajar durante todo el año con o sin radiación solar. ACS durante los 365 días del año día y noche.

Energía solar térmica y termodinámica: ¿es lo mismo?

No. Es muy frecuente confundir la energía solar termodinámica con la térmica , ya que ambas hacen uso de los rayos solares para funcionar. Sin embargo, la principal diferencia entre ambas es que en la térmica, solo es posible generar energía a partir de la radiación solar. Mientras que la energía solar termodinámica puede servirse del viento, de la lluvia o del propio aire. Esto se debe a que los paneles solares termodinámicos funcionan por la diferencia de temperatura. Es decir, siempre que la temperatura del panel sea superior a los -7º, el sistema podrá proporcionar agua caliente sanitaria a unos 60º.

En lo que respecta al propio funcionamiento, también hay diferencias en la instalación de un panel solar termodinámico. En esta se utiliza una bomba de calor que tiene ganancia solar. Sin embargo, en la solar térmica se utiliza un acumulador de calor. Por último, la energía térmica debe estar siempre orientada al sur. De este modo, puede obtener la mayor cantidad de luz solar a lo largo del día. Por el contrario, en la energía solar termodinámica puede existir cierta variación en su posición. El motivo estás en que, como hemos dicho, es posible utilizar otras condiciones meteorológicas para funcionar.

Evolución del aire acondicionado: desde la antigüedad hasta nuestros días

Para llegar al aire acondicionado como lo conocemos en la era Moderna tenemos que retroceder algunos siglos. Desde tiempos remotos el ser humano siempre ha buscado a través de diferentes técnicas la forma de climatización y/o refrigeración.

Por ejemplo, ¿sabías que en el antiguo Egipto ya se utilizaban sistemas y métodos para poder reducir el calor? La técnica que utilizaban era principalmente para mejorar la sensación de calor dentro del palacio del Faraón, que contaba con unas paredes formadas de enormes bloques de piedras con un peso superior al de las 1.000 toneladas. El sistema no era otro que utilizar a 3.000 esclavos durante la noche para desmantelar las paredes y cargar las piedras al desierto. ¿Por qué? El clima por la noche en el desierto disminuye a niveles muy bajos y eso hacía que las piedras se enfriasen de manera notable. Tras pasar la noche en el desierto, poco antes de que amaneciera se volvían a colocar las piedras en el palacio. Una acción que hacían cada noche y que permitía al Faraón contar con una temperatura media en palacio de unos 26°C.

Por otro lado, ¿sabías que en la antigua India se colgaban esteras de hierba húmeda en las puertas y ventanas para así al entrar aire disminuyera la temperatura. ¿O que en algunos palacios del Imperio Musulmán las paredes estaban llenas de vegetación que se rociaban de agua continuamente para que la evaporación hiciera que se enfriara el ambiente?

Técnicas modernas

Y es que el ser humano siempre ha estado a la búsqueda de nuevas técnicas. Si nos vamos al año 1555, se tiene constancia de que se llevó a cabo el primer procedimiento técnico para acondicionar el aire, basado en un ventilador artificial utilizado, sobre todo, para las cuevas de minas. No sería hasta 1711 cuando Johann Justus Bartels ideó el primer ventilador que funcionaba para ambientes cerrados, como túneles.

En 1715 el francés Gaugger sería quien publicase, tras un estudio sobre la ventilación, su importancia para poder combatir enfermedades de tipo infecciosa. Una idea que llevaron a cabo en 1741 Stephen Hales y Martin Friewald cuando inventaron el acondicionados de aire para las habitaciones de hospital y los camarotes de los barcos. Un invento que estaba construido a través de dos palas grandes de molino. Su función era bombear el aire y dirigirlo a través de tubos para generar corrientes de aire.

100 años más tarde, sería el médico norteamericano John Gorrie quién creó la primera máquina frigorífica que utilizaba el conocido principio de expansión de aire para aliviar el calor a sus enfermos. Ya en 1842 el físico y matemático Lord William Thomson Kelvin inventó el principio del aire acondicionado. Con el objetivo de conseguir un ambiente agradable y sano, el científico creó un circuito frigorífico hermético basado en la termodinámica: absorción de calor a través de un gas refrigerante.

1902: llegada del aire acondicionado moderno

Sería en el año 1902 cuando el estadounidense Willis Haviland Carrier sentara las primeras bases de la refrigeración tal y como la conocemos. Carrier, con seis colegas, invirtió 32.600 dólares en su propia compañía, Carrier Engineering Corporation. Empresa dedicada exclusivamente al aire acondicionado y muy centrada en la investigación e innovación tecnológica de este producto, sobre todo aplicado al sector industrial. Algunos de sus primeros clientes fueron el Madison Square Garden y los departamentos del senado de los Estados Unidos y la cámara de representantes.

Ya más adelante, en 1921, el propio Carrier patentó una máquina de refrigeración centrífuga, que fue el primer invento que permitía enfriar grandes espacios. Esto llevó a la compañía a ser pionera en diseño y fabricación de máquinas de refrigeración de espacios grandes. Aumentando la producción industrial durante el verano. El aire acondicionado revolucionó, sin duda, la vida norteamericana.

Aire acondicionado para viviendas

Pero no fue hasta 1928 cuando Carrier desarrolló el primer equipo dedicado a enfriar y calentar los hogares. Invento que lamentablemente, en un primer momento, acabó chocando con la gran depresión económica de los Estados Unidos, que hizo que sus ventas no cumplieran las expectativas creadas. Pero a partir de la II Guerra Mundial la situación cambió y comenzó a extenderse la compra de los sistemas de refrigeración en todo el país y a nivel mundial.

La importancia de un hogar bien climatizado

No encontrar este confort en el hogar puede tener consecuencias directas en nuestra salud. En primer lugar, en una casa mal ventilada la humedad se acumula en techos, alfombras y paredes. Además, los altos índices de agua en el ambiente ocasionan microclimas idóneos para la proliferación de ácaros y moho. Por otro lado, la temperatura adecuada de una vivienda debe estar en torno a los 20ºC. No podemos olvidar que tanto el calor como el frío se escapan a través de puertas y ventanas. Por lo que una buena solución para combatir estos problemas es la instalación de un equipo de climatización.

Otras alternativas de refrigeración

  • Refrigeración evaporativa

Es un proceso que se ha utilizado desde hace siglos como enfriador de aire. Sus principales ventajas son su elevada eficiencia energética, su seguridad y el respeto por el medio ambiente. Es un proceso natural que se basa en la utilización del agua como un refrigerante. Gracias a ello, es posible la transmisión a la atmósfera de todo el calor que resulta excedente en las máquinas de tipo térmico. Los equipos más comunes que emplean el enfriamiento evaporativo son los condensadores y las torres de enfriamiento.

  • Sistema aerotérmico de ventilación

Uno de los métodos que mejor funcionan para obtener una buena ventilación y a la vez conseguir eficiencia energética, que nos permite tener una temperatura confortable en nuestra vivienda, es el sistema por aerotermia. Este tipo de sistema es muy eficiente no sólo para la refrigeración de las casas en verano, sino incluso, para calentar las estancias en invierno.

  • Ventilación mecánica o inteligente

Dentro del sistema de ventilación mecánica encontramos por un lado la ventilación mecánica controlada que funciona con una central de ventilación que fuerza la extracción del aire para renovarlo y garantizar así la calidad del aire interior. Este tipo de ventilación permite gestionar eficientemente el consumo energético a la hora de renovar el aire interior de un espacio.

  • Aire acondicionado solar

Este tipo de sistemas cuentan con el mismo funcionamiento que un aire acondicionado tradicional, pero obtienen la energía del sol. Para ello, cuenta con paneles fotovoltaicos integrados para poder absorber la energía solar y así alimentar el sistema de aire acondicionado. Cuando hablamos de aire acondicionado solar podemos diferenciar dos tipos: el solar híbrido y el por absorción.