Archivos por Etiqueta: placas solares

monitorización fotovoltaica

¿Es importante la monitorización fotovoltaica?

Seguro que has oído alguna vez el famoso eslogan publicitario que dice: “La potencia sin control no sirve de nada”, bien, esa frase se puede aplicar a muchos campos de trabajo y, por supuesto, a la fotovoltaica. Aunque es muy importante que nuestra instalación de autoconsumo esté funcionando correctamente, también es necesario saberlo. Para ello se diseñan los sistemas de monitorización fotovoltaica, pero, ¿sabes qué son y sus ventajas?

¿En qué consiste la monitorización fotovoltaica?

Cualquier actividad que realicemos necesita de sus “KPI” o indicadores de actividad. Con ellos medimos a lo largo del tiempo la evolución de los resultados, bien sean parciales o globales. De esta forma sabemos en cada momento como se está desempeñando y podemos tomar medidas correctoras cuando se desvían de los objetivos marcados.

Estos indicadores y su panel de visualización son como el panel de instrumentos y el volante de un coche que nos ayudan a saber el estado del vehículo y poder conducirlo adecuadamente. Porque si no sabemos dónde estamos, si no medimos lo que hacemos, no podemos saber si mejoramos o empeoramos en nuestra actividad diaria.

Pues bien, la monitorización fotovoltaica es el instrumento que nos ayuda a conocer el estado de nuestra instalación solar:

cuanto está produciendo la instalación de autoconsumo

qué cantidad de esa electricidad estamos consumiendo simultáneamente, es decir, un autoconsumo directo

cuanta electricidad estamos guardando en las baterías

cuantos kWh exportamos a la red, para que nos los compensen de los que compramos

nos indica de fallos en el sistema y podemos detectar si ha sucedido algo que impide que las placas solares funcionen correctamente

ver el histórico de generación por días, meses y años

saber el equivalente a emisiones de CO2 evitadas y de árboles plantados

Y muchos datos más que son importantes para la gestión y mantenimiento del sistema solar.

¿Cómo funciona la monitorización de un sistema fotovoltaico?

Un sistema de monitorización es básicamente la visualización de toda la información que recoge el inversor y otros componentes (como optimizadores y otros como el Clever DX de la empresa española Clever Solar Devices). El Inversor solar es el cerebro de una instalación fotovoltaica, el equipo que recoge los datos de los componentes del sistema solar, los analiza y los transforma en información para decidir qué hacer en cada momento.

Por ejemplo, lo primero que hace el inversor es identificar la red eléctrica a la que está conectada la instalación de autoconsumo. Así, determina si debe trabajar a 230 V y 50 Hz, o a 125 V y 60 Hz, u otro tipo de red, en función del país donde se ha instalado. Esto es muy importante porque la electricidad que generan los módulos solares es en corriente continua (DC) y el consumo en las viviendas y la red eléctrica funcionan en alterna (AC).

De esta forma, el inversor realiza la transformación de la electricidad en continua a alterna, para que la podamos usar en nuestro hogar o ceder a la red. Al mismo tiempo, el inversor está recogiendo datos del funcionamiento de todo el sistema que se transfieren vía wifi o por cable a la monitorización fotovoltaica.

Este software, es decir, la monitorización fotovoltaica, traduce esa información en gráficos y barras de generación y consumo, y expresiones numéricas, además de hacer algunos cálculos para establecer las conversiones a unidades de CO2 evitadas o cantidad de árboles equivalentes plantados, etc. Y lo expone en una pantalla a través de una aplicación web o para smartphone, tal y como vemos en la siguiente figura.

¿Por qué es importante monitorizar la instalación fotovoltaica?

La monitorización fotovoltaica de una instalación solar es necesaria para tener información sobre todo lo que sucede en la misma y, lo más importante, poderla ver en remoto.

☀ Para empezar, podemos saber cuánta electricidad estamos generando; además el inversor nos informa que cantidad de esa electricidad la consumimos directamente y cuanta se va a la red.

☀ También contabiliza la electricidad que entra en nuestra vivienda procedente de la red de distribución eléctrica. De esta forma podemos controlar en la factura qué cantidad de consumo neto (electricidad de red menos electricidad de paneles solares). Aunque también podemos comprobarlo instalando unos medidores inmediatamente después del contador eléctrico.

☀ Nos informa de las condiciones climáticas, lo que nos permite hacer previsiones para el consumo y generación de electricidad.

☀ Estamos informados en tiempo real de cualquier alarma de error y podemos saber en qué grupo de placas solares está el problema.

Con esta última información se pueden programar mejor las tareas de mantenimiento, tanto preventivo, para centrarnos en aquellas zonas donde haya alarmas menores, como correctivo. Un ejemplo muy claro de esto es la simple tarea de limpieza de los paneles. Se ha comprobado que el polvo que se va acumulando sobre las placas va reduciendo su rendimiento.

Es decir, comparando dos días similares de irradiación solar y temperatura, pero que la suciedad acumulada ha aumentado, aunque sea en poca cantidad, la generación eléctrica decae significativamente. Esto se puede detectar gracias a la monitorización, dándonos un aviso de la necesidad de limpiar las placas solares, para recuperar el nivel óptimo de generación eléctrica.

reciclaje de paneles solares

¿Cómo es el reciclaje de paneles solares fotovoltaicos?

El reciclaje de paneles solares fotovoltaicos es un proceso crucial para gestionar el fin de vida útil de los módulos y recuperar materiales valiosos. A medida que la adopción de la energía solar crece, también lo hace la necesidad de reciclar eficientemente estos paneles. Aquí te proporciono una visión detallada sobre cómo se realiza este reciclaje, los tipos de paneles y los materiales que se recuperan.

Tipos de Paneles Solares Fotovoltaicos

El reciclaje de los módulos fotovoltaicos no es igual en todos los casos, puesto que los materiales que componen los diferentes tipos de paneles no son los mismos. Es por ello que primero debemos diferenciar entre las principales tecnologías que existen y tienen un proceso de reciclaje de paneles solares diferente.

* Paneles con base de silicio:

Dentro de este grupo encontramos tres tipos de paneles: los monocristalinos, los policristalinos y los de silicio amorfo. Cada uno de ellos utiliza una tecnología diferente de fabricación, sin embargo, la base de la celda fotovoltaica es de silicio.

Composición de paneles con base de silicio
VidrioPlásticosAluminioSilicioOtros metales
76%10%8%5%1%

* Paneles de película delgada:

Dentro de este grupo encontramos diferentes tecnologías, como la CIGS o la CdTe, que utilizan diferentes tipos de minerales como base para la conversión fotón-electricidad.

  • CIGS: Utilizan una combinación de cobre, indio, galio y selenio. Son flexibles y pueden ser aplicados en superficies irregulares.
  • CdTe: Utilizan telurio de cadmio. Son más baratos de producir, pero tienen peores consideraciones ambientales debido a la toxicidad del cadmio.
Composición de paneles de película delgada
VidrioPlásticosAluminioMetales
89%4%6%1%

Proceso de reciclaje de los paneles solares

El reciclaje de paneles solares varía según el tipo de tecnología utilizada en su fabricación. A continuación, se describe el proceso general para cada tipo.

• Paneles de Silicio Cristalino

  1. Desmontaje Inicial:
    • Separación del vidrio: el vidrio templado que cubre el panel se retira y se recicla. Este vidrio representa aproximadamente el 75% del peso total del panel.
    • Retirada del marco de aluminio: el marco de aluminio se separa y se recicla fácilmente.
    • Retirada de conexiones eléctricas: los cables y la caja de conexiones se cortan y arrancan mecánicamente.
  2. Triturado y Separación:
    • Las láminas de celdas fotovoltaicas que conforman los paneles se trituran en partículas pequeñas para facilitar la separación de los diferentes materiales.
    • Se utilizan técnicas mecánicas (triturado y tamizado) y térmicas (calor para derretir plásticos y encapsulantes) para separar las celdas de silicio del resto de los componentes.
  3. Recuperación de Silicio:
    • El silicio recuperado se limpia y se puede reintroducir en la producción de nuevos paneles solares, tras una purificación adicional.
    • Tratamiento químico adicional: Puede ser necesario para purificar el silicio recuperado.

Materiales Recuperados:

  • Vidrio: Se puede recuperar hasta el 95%.
  • Aluminio: Se puede recuperar casi el 100%.
  • Silicio: Entre el 85-95% puede ser recuperado y purificado para reutilización.
  • Plata y cobre: Recuperados mediante procesos químicos de lixiviación.

• Paneles de Película Delgada

El reciclaje de paneles de película delgada es más complejo debido a la diversidad de materiales y su disposición en capas finas.

  1. Desmontaje y triturado:
    • Similar al proceso de los paneles de silicio, se retiran los componentes externos (marcos de aluminio, vidrio, cables y caja de conexiones) y se trituran los paneles.
  2. Tratamiento químico:
    • Los materiales se someten a baños químicos para disolver y separar los diferentes metales.
    • Recuperación de compuestos específicos como el cadmio y el telurio en el caso de los paneles CdTe.

Materiales Recuperados:

Los materiales recuperados y sus porcentajes de recuperación dependen del tipo de tecnología de fabricación de los diferentes tipos de paneles solares fotovoltaicos:

  • CIGS: Se recuperan cobre, indio, galio y selenio, aunque los porcentajes de recuperación pueden variar dependiendo del proceso.
  • CdTe: Se recuperan cadmio y telurio, con altos niveles de eficiencia de recuperación.
  • Vidrio: Se puede recuperar entre el 90-95%.
  • Otros metales: Recuperados a través de procesos químicos específicos.

Beneficios del reciclaje de módulos solares

El reciclaje de paneles solares fotovoltaicos nos aporta muchas ventajas, aunque su reprocesado debemos considerarlo obligatorio, aun sin todos estos beneficios.

  1. Sostenibilidad:
    • Reducción de la extracción de materias primas: Al reciclar los materiales, se disminuye la necesidad de extraer nuevos recursos, lo cual reduce el impacto ambiental.
    • Conservación de recursos naturales: Al reutilizar los materiales recuperados, se conservan recursos naturales valiosos.
  2. Reducción de Residuos:
    • Minimización de residuos peligrosos: Al reciclar paneles solares, se evita que materiales potencialmente peligrosos terminen en vertederos.
    • Reducción del volumen de residuos electrónicos: Contribuye a la gestión adecuada de los desechos electrónicos.
  3. Ahorro de Energía:
    • Menor consumo energético: El reciclaje consume menos energía que la producción de nuevos materiales desde cero.
    • Reducción de la huella de carbono: Disminuye las emisiones de CO2 asociadas a la fabricación de nuevos materiales.
  4. Valor Económico:
    • Recuperación de materiales valiosos: Los materiales como el silicio, cobre, plata, y otros metales tienen un alto valor económico.
    • Generación de empleos: La industria del reciclaje crea empleos y contribuye al desarrollo económico.

Desafíos y Futuro del Reciclaje de Paneles Solares

  • Eficiencia del Reciclaje: Mejorar las tecnologías para aumentar los porcentajes de recuperación y reducir el impacto negativo del propio reciclaje, tanto en procesos térmicos como químicos.
  • Costos: Reducir los costos asociados al reciclaje para hacerlo más viable económicamente.
  • Regulación y Normativas: Implementar políticas que fomenten el reciclaje adecuado y la gestión de residuos electrónicos.

El reciclaje de paneles solares fotovoltaicos es un campo en evolución con un gran potencial para contribuir a la economía circular y la sostenibilidad ambiental. Con el incremento en la adopción de energía solar, la eficiencia y efectividad de estos procesos serán cada vez más importantes.

Irradiancia, irradiación y radiación solar

Irradiancia, irradiación y radiación solar

El mundo de la fotovoltaica está invadiendo nuestras vidas y las noticias sobre las instalaciones se suceden con mucha rapidez. En algunas ocasiones por las huertas solares que las grandes empresas energéticas construyen, otras veces porque algún familiar, amigo o conocido ha buscado una empresa para instalarla en su casa. Con la energía solar, se habla de aspectos relacionados con la luz del sol, como la irradiancia, la irradiación y la radiación solar, que muchas personas creen que es lo mismo. Y, sin embargo, son conceptos diferentes que dan medidas de cosas diferentes. Y tú, ¿sabes qué es la irradiancia, la irradiación y la radiación solar?

¿Qué es la radiación solar?

La radiación solar es la energía que el sol emite constantemente. Esta energía se propaga en todas las direcciones a través del espacio en forma de ondas electromagnéticas. Esta radiación se divide en diferentes tipos de ondas que se diferencian por su longitud de onda. Los grandes grupos que forman todo el espectro son las ondas de radio, las microondas, los infrarrojos, las ondas visibles por el hombre, los ultravioleta, los rayos x, los rayos gamma y los rayos cósmicos.

Todas estas diferentes ondas se caracterizan por dos magnitudes básicas, que guardan una relación inversamente proporcional entre sí. Estos parámetros son la longitud y la frecuencia de onda. Así, las radiaciones más potentes tienen unas frecuencias muy grandes, pero unas longitudes bajas. Mientras que las radiaciones más débiles tienen unas frecuencias muy pequeñas y unas longitudes muy grandes.

La radiación solar que llega a la superficie de la tierra la podemos aprovechar en función de su forma de incidir sobre las superficies. Es decir, al entrar en la atmósfera, la radiación se encuentra con diferentes obstáculos como las nubes, la contaminación y otro tipo de sustancias que pueden estar suspendidas en el aire.

Así, podemos diferenciar tres tipos de radiación solar que una instalación fotovoltaica puede aprovechar:

  • Radiación directa: es la parte de radiación solar que llega directamente del sol sin sufrir ninguna interferencia. Eso hace que sea la más potente y la que mejor aprovechan los paneles solares fotovoltaicos.
  • Radiación difusa: es la parte de la radiación que atraviesa nubes o polvo en suspensión, por lo que se “difumina”. Por ello, pierde parte de su potencia, bajando la cantidad de W que inciden por cada metro cuadrado.
  • Radiación de albedo o reflejada: es la parte de la radiación que recibimos de forma indirecta cuando rebota sobre superficies que hay a nuestro alrededor. Algo que sucede con la nieve y otros objetos blancos que reflejan prácticamente toda la radiación que les llega, llegando a molestarnos esa radiación que nos llega rebotada.

¿Qué es la irradiancia solar?

La irradiancia es la potencia solar que llega a la tierra. Se mide sobre una superficie horizontal para determinar la potencia que tiene esa radiación al llegar a la tierra, mediante un instrumento llamado piranómetro. Con él se determina qué cantidad de vatios “W” incide en un metro cuadrado.

Como dato interesante sobre la protección que nos brinda la atmósfera, es la cantidad de irradiancia que esta detiene, impidiendo que algunos tipos de ondas no lleguen a la superficie terrestre. Así, a la parte alta de la atmósfera llegan alrededor de 1.400 W/m2, en cambio, la irradiancia en la superficie de la tierra, en una localización apropiada y con las mejores condiciones meteorológicas, está entre los 900 W/m2 y los 1.000 W/m2.

Así, la irradiancia en el valor puntual de la potencia solar que índica un determinado momento sobre una superficie. Al ir midiendo esa potencia a lo largo de un día, obtenemos una línea de puntos que marcan unos valores que son cero durante las horas de oscuridad y van creciendo a lo largo de la mañana, para descender pasado el mediodía. Tal como vemos en la siguiente gráfica.

¿Qué es la irradiación solar?

La irradiación solar es la energía que el sol nos hace llegar con su potencia energética, es decir, es la cantidad de potencia solar que recibimos durante un determinado tiempo. Se mide en varios por hora que inciden en una determinada superficie, es decir, Wh/m2.

Si observamos la gráfica anterior, podemos identificar la irradiación solar como el área inferior que crea la curva de la irradiancia.

Trasladado a los sistemas fotovoltaicos, decimos que una instalación tiene una potencia pico de 10 kWp, por ejemplo. Puesto que es la capacidad que tienen esas placas solares para aportar una tensión determinada. Sin embargo, cuando ese sistema se pone en funcionamiento y recibe la luz solar, lo hace durante un determinado tiempo, minutos, horas, etc., es entonces cuando esa potencia genera una energía, que podemos aprovechar en cualquier aparato eléctrico.

Bomba de calor híbrida para la climatización

Bomba de calor híbrida para la climatización

La bomba de calor ha sido designada por muchas instituciones y organismos como el sistema de climatización del futuro, aunque ya lo es en el presente. La obligación que tenemos de ir eliminando los combustibles fósiles de nuestras vidas, para dejar de contaminar y no depender de los países productores de gas, petróleo o carbón, está ayudando a los equipos de aerotermia. Sin embargo, hay fabricantes que ha decidido ofrecer una alternativa intermedia y han creado un sistema híbrido. Pero, ¿qué es realmente una bomba de calor híbrida?

Entendemos por bomba de calor híbrida al equipo que combina una máquina de aerotermia con un sistema auxiliar que la ayuda a proporcionarnos climatización y agua caliente sanitaria. De forma que se consideran un conjunto que cubre todas nuestras necesidades en la vivienda.

La combinación entre la aerotermia y otros sistemas tradicionales mejora la aportación de climatización, reduciendo el consumo, o lo que es igual, aumentando la eficiencia energética. Así, podemos encontrar bombas de calor preparadas para trabajar con una caldera de gas independiente; otras que integran en un mismo equipo las dos tecnología, y un tercer grupo de máquinas de aerotermia que se integran con el sistema fotovoltaico.

Hay dos grandes motivos que justifican la hibridación de la bomba de calor, el primero es el aprovechamiento del sol para suministrar la energía eléctrica que consume la aerotermia. De esta forma se convierte en un equipo 100% ecológico y renovable. El segundo motivo es por la climatología.

• Bomba de calor híbrida con fotovoltaica

Con los sistemas de calefacción tradicionales era habitual la instalación de paneles solares térmicos, sin embargo, con una bomba de calor, cuyos combustibles son la electricidad y el aire del exterior, lo lógico es vincularla con un sistema fotovoltaico.

De este modo, hay fabricantes que han integrado en la bomba de calor un kit de conexión y comunicación con el inversor fotovoltaico. De esta manera, ambos equipos se comunican y se pueden programar para que la bomba de calor trabaje cuando hay un exceso de producción eléctrica. Así, el equipo de aerotermia aprovechará el exceso de energía para calentar o enfriar el agua del depósito de inercia destinado a la climatización.

Esa agua queda preparada para cuando los termostatos demanden calefacción o refrigeración, actuando como una batería de agua a temperatura deseada. De este modo, estamos aprovechando al 100% las energías renovables para la climatización de nuestra vivienda. Teniendo en cuenta que la bomba de calor es capaz de generar toda la climatización, aprovechando hasta el 75% de la energía térmica del aire, y con el 25% restante de electricidad, que en este caso es de origen solar renovable.

• Hibridación con solar térmica

Realizar una instalación de bomba de calor híbrida con energía solar térmica era una opción que se realizaba con frecuencia hace un par de décadas. En aquellos momentos la fotovoltaica aún era demasiado cara para instalaciones residenciales. Por ese motivo se acudía a un apoyo en la generación directa de agua caliente. Sin embargo, esta combinación tenía un hándicap; al llegar la primavera y la bomba de calor trabaja en modo verano, la producción de agua caliente seguía y se necesitaba disipar ese calor generado, fuera de la vivienda.

En cambio, al abaratarse las instalaciones fotovoltaicas de autoconsumo, este sistema ha sustituido casi por completo a la solar térmica. El motivo es obvio, cuando la bomba de calor deja de trabajar, la electricidad que se sigue generando puede ser utilizada en otros electrodomésticos, en la iluminación, (almacenada en una batería física o virtual) para aprovecharla durante la noche.

• Hibridación con caldera de gas

La aplicación de integrar una bomba de calor con una tradicional caldera de gas está pensada para climas más rigurosos y en función de la temperatura de agua que se necesita. De modo que, a muy bajas temperaturas, cuando la bomba de calor pierde rendimiento, es la caldera de gas la que se activa y trabaja para generar calefacción. Cuando las temperaturas exteriores empiezan a ser más suaves, es cuando entra a trabajar la bomba de calor.

También se puede regular la bomba de calor híbrida en función del sistema de radiación del calor. Es decir, en viviendas con radiadores tradicionales la caldera de gas trabajará durante más tiempo. En cambio, si el sistema es un suelo radiante, la bomba de calor trabajará apenas las temperaturas exteriores estén superen los -5 °C.

Así, podemos resumir en dos condicionantes la decisión de unir ambas tecnologías en un único equipo:

  • La temperatura de suministro a emisores (desde 40 °C a 85 °C), así como las necesidades térmicas de la instalación.
  • Las condiciones climáticas de trabajo para la unidad exterior. Esto viene afectado por la zona climática y las temperaturas más extremas que se pueden dar en cada lugar.
Bomba de calor híbrida con caldera

Hogarsense.es

Solar fotovoltaica aérea: ampliando horizontes de la energía solar

Las instalaciones fotovoltaicas han experimentado en los últimos años un empuje nunca antes visto, hasta desarrollar solar fotovoltaica aérea. Prueba de ello es el aumento de potencia eléctrica instalada en todo el mundo, que ha pasado de 4.233 MW en el año 2011 a los 19.785 MW en 2022. Aunque el gran salto se ha producido a partir del año 2018, cuando solo había 4.767 MW en España.

Si hablamos de datos a nivel global, en 2011 había 70,5 GW (70.500 MW), que pasó a 940 GW en el 2021 (940.000 MW). España ha sido el país que más ha crecido en los últimos años, gracias al cambio normativo que eliminó el llamado “impuesto al sol”. Además, somos el país con la mayor penetración de energía fotovoltaica del mundo.

¿Qué retos plantea la instalación de parques fotovoltaicos?

El gran volumen de paneles solares que se está instalando necesita de una superficie donde apoyarse y es este el “talón de Aquiles” que ya estamos viviendo. Por ejemplo, se han realizado instalaciones fotovoltaicas en las montañas Taihang en el norte de China. Donde se ha aprovechado grandes extensiones de colinas con un relieve suave y no ha sido necesario hacer apenas movimientos de tierras.

En cambio, en otras instalaciones solares fotovoltaicas se necesitan hacer grandes movimientos de tierras para poder adaptar el terreno y que la orografía no impida el aprovechamiento para la generación eléctrica con paneles solares. En estos casos se genera un gran impacto ambiental, se necesita talar una gran cantidad de árboles, con lo que se rompe todo el ecosistema de flora y fauna. Algo que se supone va en contra del fomento de las energías limpias, como es el caso de la solar.

También se están dando casos donde se presiona a los agricultores para que vendan sus parcelas, con la intención de ejecutar proyectos fotovoltaicos. Sin embargo, esto desplaza la economía y se destruye empleo en las zonas rurales, en vez de crearlo.

cultivos agrícolas con paneles fotovoltaicos
Cultivo con instalación fotovoltaica

Cambio de mentalidad en las estructuras fotovoltaicas

Hasta el momento encontramos tres tipos principales de instalaciones fotovoltaicas; la residencial o de autoconsumo, la industrial (aunque también sea de autoconsumo, sé la diferencia porque la potencia instalada es mucho mayor) y las plantas de generación. Las dos primeras suelen ser de un tamaño pequeño o medio y aprovechan los propios tejados de viviendas o naves industriales. Sin embargo, para el tercer grupo se necesitan grandes extensiones de terreno de las que en ocasiones no se dispone (sin causar perjuicios de algún modo).

Por ello, la necesidad de buscar una alternativa que genere electricidad limpia y sea lo más respetuosa con el entorno, sin transformarlo y dejando que los ecosistemas naturales puedan continuar su vida, hace que aparezcan ideas innovadoras. Ante la competencia por el espacio, una posible solución a la mayor parte de estos problemas sería elevar la instalación de módulos fotovoltaicos, independizándola de la topografía y usos del terreno.

Así nace la propuesta de dos ingenieros de minas asturianos. Su desarrollo de proyecto se basa en usar la 3ª dimensión, aprovechar la altura para escapar de las restricciones que impone el terreno, su topografía y usos.

Para ello, se parte de dos tecnologías maduras; por un lado, la construcción de estructuras suspendidas de cables de acero (como en los teleféricos, cubiertas suspendidas de cables e instalaciones similares). Y, por otra parte, la energía solar fotovoltaica, que ya cuenta con largo recorrido y unas eficiencias bastante altas.

¿En qué consiste la Solar Fotovoltaica Aérea?

El nuevo concepto se basa en la unión de estas dos tecnologías para crear una nueva forma de despliegue de la energía solar fotovoltaica. Creada para llegar a sitios donde nadie había pensado y para hacer compatibles la generación de energía eléctrica limpia con las actividades previas ya implantadas en el territorio: Solar Fotovoltaica Aérea (SFVA). ¿Por qué tener que elegir entre dos actividades, si podemos tener ambas?

concepto de Solar Fotovoltaica Aérea
Concepto de la Solar Fotovoltaica Aérea

Los módulos fotovoltaicos se instalan sobre una estructura metálica, la cual va suspendida, de al menos dos cables portantes de acero, cuyos extremos están soportados por una estructura (metálica o de hormigón) y anclados a un talud rocoso, al suelo, o a un contrapeso. De una forma similar a como funciona un funicular o un telesilla de las estaciones de esquí, los módulos solares pueden desplazarse a lo largo del cable (instalación SFVA Móvil), o permanecer fijos (instalación SFVA Fija). Estas posibilidades dependen de cada proyecto y, especialmente, de la orografía del terreno donde se proyecta la instalación fotovoltaica.

Agrovoltaica y Solar Fotovoltaica Aérea

Este nuevo concepto de estructuras en altura es fácilmente aprovechable para las explotaciones agrícolas, en las que se pretende instalar módulos solares y extraer electricidad para usos propios o la venta, generándose así una fuente de ingresos adicionales para el agricultor.

instalación agrícola con Solar Fotovoltaica Aérea
Sistema fotovoltaico en campo de vides

Una ventaja añadida que aportan estas instalaciones sobre los cultivos es que proporcionan un poco de sombra sin perjudicar la aportación de luz que necesitan las plantas y árboles. Así, este tipo de instalaciones fotovoltaicas aportan otro beneficio a las explotaciones agrícolas, ya que reducen la necesidad de riego y la erosión por la acción del viento. Además, en función de la instalación ejecutada, también permite recoger el agua de lluvia para almacenarla y disponer de ella para riego en momentos de necesidad.

El uso de la maquinaria agrícola no debe verse afectado, puesto que, con la estructura adecuada, se pueden instalar paneles fotovoltaicos a una altura suficiente para permitir el paso de tractores. Con la SFVA se pueden conseguir mayores vanos (más de 100 metros) y mayores alturas (más de 5 metros) que con los sistemas agrovoltaicos desarrollados hasta la fecha. Con la SFVA se consigue que el terreno sea más transitable, reducir los riesgos de accidente por choque de la maquinaria contra los soportes, y minimizar la pérdida de terreno agrícola. Y también se consigue una distribución más uniforme de la luz debajo de los módulos fotovoltaicos.

Solar Fotovoltaica Aérea apta para maquinaria agrícola
Solar Fotovoltaica Aérea apta para maquinaria agrícola

Otra opción es la instalación en laderas, para proteger los cultivos de la vid, el olivo u otros árboles frutales de los efectos adversos del cambio climático. Y, de paso, aprovechar la pendiente (pendientes mayores del 20 % son ideales para la SFVA) para generar la electricidad que día a día necesita la explotación agrícola.

Solar Fotovoltaica Aérea para cultivos en pendiente
Solar Fotovoltaica Aérea para cultivos en pendiente

Hogarsense.es