Archivos por Etiqueta: energía fotovoltaica

El panel solar de hidrógeno

Estamos en una carrera sin retorno hacia las energías renovables. La necesidad de descartar definitivamente los combustibles de origen fósil es innegable, a pesar de la reticencia y las dificultades que pone la tradicional industria energética, que fuerza a que la legislación avance muy lentamente.

Sin embargo, se siguen dando pequeños pasos que son grandes avances en la generación de energía sostenible. Es el caso de los paneles solares de hidrógeno que están desarrollando investigadores de la Universidad de KU Leuven, en Bélgica.

¿Cómo funciona el panel solar de hidrógeno?

Desgraciadamente, poco sabemos del funcionamiento interno de estos colectores solares, puesto que la universidad ha presentado las correspondientes solicitudes de patentes. Por ello, y hasta que estas solicitudes no estén resueltas, no se podrán tener detalles de la tecnología que han desarrollado.

panel-de-hidrogeno-hogarsense
  • Johan Martens (dcha.), profesor en la Universidad de KU Leuven y jefe del Departamento de Catálisis y Química de Superficies y de la División de Investigación y Desarrollo de Catálisis. | Universidad KU Leuven, Bélgica.

Según explicó uno de los padres de esta tecnología, el profesor Johan Martens en esta universidad belga, no debemos hablar estrictamente de un panel solar. Un colector fotovoltaico convierte la luz del sol en electricidad y, en cambio, su invento genera hidrógeno a partir de la humedad del aire.

No obstante, para esta conversión se necesita el aporte de una energía, y en este caso la aporta el colector fotovoltaico que se adapta al invento de KU Leuven.

Es por ello que el panel de hidrógeno se ha desarrollado para que se puedan adaptar todos los colectores fotovoltaicos que hay en el mercado y también las estructuras, para su instalación en tejados.

¿Qué hace al panel de hidrógeno tan especial?

Al incorporarse un colector fotovoltaico al panel de hidrógeno, se convierte la luz solar y el vapor de agua del aire directamente en hidrógeno. Es por ello que la conexión entre los paneles de hidrógeno que se instalen en un tejado debe ser por medio de tuberías. La eficiencia de este invento es de un 15% que, aunque parezca muy poco, es mayor que las formas tradicionales de conseguir hidrógeno.

En las pruebas desarrolladas en la propia universidad, con las condiciones meteorológicas de Bélgica, se pueden producir una media de 250 litros de hidrógeno al día. En términos de uso, la producción de hidrógeno que realizan 20 de estos paneles solares sería suficiente para calentar con una bomba de calor y aportar electricidad a una vivienda con buen aislamiento durante todo el invierno.

Para hacernos una idea de cómo puede funcionar deberíamos ser expertos en la ciencia de superficies absorbentes, membranas y catalizadores. Aunque, los investigadores no quieren aportar más información por el momento, debido a la patente que están esperando.

¿Cómo se desarrolló la tecnología del panel solar de hidrógeno?

Para iniciar la investigación, los técnicos se plantearon inicialmente una pregunta básica: ¿cómo se puede producir un combustible en cualquier momento y en cualquier lugar? La respuesta fue obvia, a partir del aire o, mejor dicho, de la humedad que contiene. Debemos tener en cuenta que, incluso, el aire del desierto contiene vapor de agua en suficiente cantidad para generar hidrogeno.

Un dato importante que encaminó la investigación a extraer energía de la humedad del aire es que el vapor de agua es el cuarto componente más abundante, después del oxígeno, el nitrógeno y el argón. Si conseguimos extraer esa humedad dispondremos de suficiente cantidad de agua para dividirla y fabricar hidrógeno.

Sin embargo, hay una cuestión muy importante, ¿cómo extraer el agua contenida en el aire para separar en hidrógeno y oxígeno gaseosos? Ante esta cuestión se plantea un gran problema, y es que la temperatura que alcanza un panel solar es fácilmente de 70 °C. Algo que complica trabajar con el vapor de agua.

Además, otra dificultad añadida es conseguir que el sistema funciona en condiciones de lluvia y bajas temperaturas. Es por ello que los científicos de la universidad de KU Leuven han desarrollado un sistema para conseguir realizar el proceso de separación del vapor de agua del aire y obtener agua. Y, a partir de ahí, generar hidrógeno. Sin embargo, es algo que no quieren desvelar hasta tener concedida la patente de la innovación.

¿Por qué el hidrógeno?

Durante el verano o en circunstancias favorables de sol, es fácil generar hidrógeno y almacenarlo. Así, se dispone de este combustible limpio y renovable para la época invernal, cuando las condiciones climáticas hacer más necesaria la disponibilidad de energía. El gas hidrógeno se genera a presión atmosférica, sin embargo, se puede comprimir y almacenar en recipientes a presión. E incluso se podría utilizar la red de gas natural para su almacenamiento y distribución.

Claro está que la red de gas natural debería sufrir algunas adaptaciones. No obstante, estas no son grandes y se pueden acometer con cierta facilidad. Otra opción sería ir mezclando el gas natural con el gas hidrógeno, para realizar una transición energética gradual hasta el gas hidrógeno puro.

¿El panel solar de hidrógeno sustituye a los parques eólicos y huertas solares?

No es la intención de esta innovación. Lo que se pretende es sustituir al carbón, el gasoil, petróleo, incluso al gas natural y la energía nuclear. Estamos viendo que nuestro planeta dispone de suficientes recursos naturales renovables, que pueden mover toda nuestra vida, industria y economía de una forma limpia.

Los sistemas tradicionales para generar hidrógenos siguen siendo necesarias. Es por ello que las instalaciones de aerogeneradores, las huertas solares y el autoconsumo fotovoltaico van a seguir siendo necesarios.

Debemos tener en cuenta que hay industrias muy intensivas energéticamente. Los sectores de la metalurgia, la química y otros, demandan gran cantidad de energía y calor. Generar hidrógeno suficiente con los nuevos paneles solares de hidrógenos conllevaría la instalación de una cantidad enorme de estos colectores. Algo que no es viable por el espacio que se necesitaría.

Es por ello, que los nuevos paneles solares de hidrógenos tienen un futuro más centrado en el ámbito doméstico o para pequeñas empresas.

Comunidades energéticas con fotovoltaica

La necesidad de obtener, almacenar y usar energía limpia y económica que mueva nuestro día a día, ha promovido la creación de diferentes formas de gestionarla. Ahí entra en juego nuestro protagonista: las comunidades energéticas favorecen un futuro de gestión eléctrica sostenible.

La estructura más popular para el aprovechamiento de las energías renovables es el autoconsumo fotovoltaico, tanto doméstico como industrial. Sin embargo, no todas las personas disponen de un espacio suficientemente grande como para disponer de su propia instalación fotovoltaica.

La configuración de nuestras ciudades, con edificios de viviendas en las que apenas hay espacio en el tejado para instalar unos pocos paneles solares, hace que los vecinos no puedan tener su propia e individual instalación de captadores fotovoltaicos. Es entonces cuando surgen dos conceptos que se confunden habitualmente: el autoconsumo compartido y las comunidades energéticas.

Autoproducción eléctrica

Para que dejemos de confundir ambas formas de gestión de la energía que necesitamos cada día, debemos entender que es o cómo funciona cada una de ellas.

El autoconsumo compartido surge cuando varias personas, que generalmente viven en el mismo edificio o en edificios contiguos, quieren autoproducir su propia electricidad. Sin embargo, en los edificios de viviendas no hay mucho espacio para instalar paneles solares. Por ello se unen y comparten los tejados que disponen los edificios implicados, para instalar colectores solares comunes.

De esa forma participan en partes proporcionales en la inversión inicial. Se instalan contadores para saber cuánto consume cada uno y así compensar el exceso o defecto en el que cada miembro del autoconsumo compartido ha incurrido. Además, sirve para establecer las cuotas que cada miembro debe abonar para el mantenimiento anual.

En cambio, una comunidad energética puede estar formada por personas que viven separadas, pero de alguna forma quieren invertir en un modelo energético sostenible. Para ello se unen y forma una “empresa” que puede generar, gestionar, almacenar y usar electricidad generada de forma ecológica.

¿Qué son las comunidades energéticas?

Las comunidades energéticas se definen como entidades con personalidad jurídica propia. Son formadas por ciudadanos particulares, administraciones o pequeñas empresas. Su función es generar, gestionar, almacenar o consumir energía, persiguiendo un doble fin: la eficiencia energética y el ahorro de energía. En definitiva, las comunidades energéticas favorecen un futuro de gestión eléctrica sostenible.

Las comunidades energéticas favorecen un futuro de gestión eléctrica sostenible

Un ejemplo de actividades en las que se pueden basar una comunidad energética son el autoconsumo o la generación distribuida. Este tipo de comunidades ya se han implantado en nuestro país en pequeños pueblos que han aprovechado alguna infraestructura local para la instalación de paneles fotovoltaicos. De esta manera, se genera la electricidad donde se va a utilizar, simplemente se distribuye entre los vecinos del mismo pueblo.

Con ello se consiguen dos grandes ventajas. Se reducen las pérdidas por el transporte, ya que la electricidad se consume en las cercanías. Y se asegura un precio más estable y económico de esa electricidad.

Además, los beneficios ambientales también son importantes, con un aumento de energía renovable distribuida o una reducción de los combustibles fósiles empleados. Así mismo, hay mejoras sociales, con el empoderamiento ciudadano, el fomento del empleo local, o la creación de un tejido comunitario. En definitiva, una mayor participación de los ciudadanos que garantiza el derecho de acceso a una energía asequible.

¿Qué actividades desarrollan?

Según la definición de una comunidad energética, ya entrevemos las principales actividades que desarrolla en su funcionamiento cotidiano. Sin embargo, vamos a detallarlas y clarificarlas una a una:

  • Generación de energía de fuentes renovables. Es la actividad más clara y extendida en las comunidades energéticas que ya existen. Se aprovecha un espacio para la instalación de un huerto solar o un salto de agua para montar una turbina, por ejemplo. De modo que se usan plantas de generación eléctrica colectivas, y se aprovecha la energía bajo el paraguas de un autoconsumo compartido.
  • Distribución, gestión, suministro, agregación y almacenamiento de energía. Sed puede crear una comunidad energética para gestión la electricidad generada por otras entidades, de forma que los miembros de la comunidad se beneficien de esa gestión, por su precio u otra ventaja. Aunque. Lo general es realizar la gestión de la electricidad que se ha producido en una planta propia de la comunidad energética.
  • Intercambio de energía. Este ejemplo de comunidad energética se puede dar entre diferentes miembros que son autoconsumidores, pero las horas de uso o de generación entre ellos no coinciden. Por ello deciden unirse para compartir la energía generada por cada uno, de modo que configuran una pequeña red de generación, distribución y consumo. Como una batería virtual entre los miembros de la comunidad energética.
  • Servicios de eficiencia energética. La comunidad sirve para asesorar a los miembros, vecinos, comercios y empresas locales. De manera que puedan reducir sus consumos y su factura energética.
  • Movilidad eléctrica. Son comunidades que se dedican al fomento, instalación y gestión de puntos de recarga para vehículos eléctricos u otros dispositivos.

Limitaciones

La principal limitación que se encuentran las comunidades energéticas es la ausencia de un marco regulatorio adaptado a la legislación española. Esto es debido a que la Directiva (UE) 2018/2001 del parlamento Europeo y del Consejo, relativa al fomento del uno de la energía procedente de fuentes renovables, aún no se ha transpuesto en su totalidad a la legislación española.

Por ello, se está tomando como límite geográfico para las comunidades un radio de 500 metros desde la generación hasta los puntos de consumo. Esta limitación viene impuesta para las instalaciones de autoconsumo compartido, y no deberían afectar a las comunidades energéticas. Sin embargo, al no tener un marco regulatorio propio, se utilizan algunos criterios de aquellas.

Está previsto que esto se modifique y se amplíe el radio de acción a 2 o incluso a 20 km. Esto ayudaría a definir la amplitud que pueden alcanzar las comunidades energéticas. De forma que en pequeñas poblaciones puedan unirse diferentes interesados, aunque no estén físicamente juntos, para formar una comunidad energética que mejore sus recursos energéticos.

Por qué limpiar los paneles solares

Instalar un sistema de paneles fotovoltaicos tiene tres objetivos principales para la gran mayoría de las personas. Muchos queremos salir de la dependencia total de las grandes empresas energéticas, otras muchas personas estamos preocupadas por el futuro de nuestro planeta y el nuestro mismo. Hay otro gran grupo de personas que nos unimos al autoconsumo para hacer una inversión a medio plazo.

Sin embargo, para que la inversión sea buena y la amortización de los colectores fotovoltaicos se realice en el tiempo estimado, debemos asegurarnos de que trabaje en las condiciones adecuadas. Es por ello que un mantenimiento periódico y la correcta limpieza de las placas es fundamental.

Limpiar las placas solares no parece algo necesario y muchas personas no le den importancia. Sin embargo, si queremos aprovechar realmente nuestra inversión, es una tarea de vital relevancia. Limpiar los paneles fotovoltaicos ayuda a mantener la eficiencia de estos.

¿Cómo afecta la suciedad a las placas solares?

Lógicamente, cuando las placas están sucias, su eficiencia disminuirá, es algo que lo sabemos todos, aún sin tener ningún conocimiento de fotovoltaica. Al igual que sucede, por ejemplo, con el aspirador que usamos en nuestra casa, pierde poder de aspiración si no cambiamos la bolsa periódicamente. Por el mismo motivo, es importante proceder a limpiar los paneles fotovoltaicos con cierta frecuencia.

Pero, ¿en qué grado afecta la suciedad al rendimiento de las placas solares? Tener clara la respuesta a esta pregunta nos hará ver la importancia de limpiar los colectores solares con la frecuencia adecuada.

Los expertos en fotovoltaica han catalogado la suciedad que se deposita sobre los paneles solares en tres tipos. La experiencia de muchos años realizando pruebas de rendimiento de las placas solares ya instaladas, ha dado como resultado las cifras de eficiencia que avalan la necesidad de limpiar los colectores solares de forma periódica.

1. Suciedad grave

limpiar placas solares con polvo

Cuando hablamos de suciedad grave nos referimos a la acumulación de diferentes tipos de suciedad, debida a la falta de limpieza durante largo tiempo, por ejemplo, un año. Es decir, se acumula una capa de polvo, mezclada con arena que el viento deposita y deposiciones de pájaros, además de hojas de árboles.

Esto hace que las celdas fotovoltaicas apenas reciban la luz del sol, o en su caso, muy mermada. En estos casos podemos sufrir una merma del rendimiento del 35% al 50% sobre el óptimo del panel solar fotovoltaico. Esto puede suponer doblar el tiempo de amortización previsto.

2. Excrementos de pájaros

En cuanto a las manchas, bien sean de excrementos de pájaros o de otro tipo similar, hojas de árboles que se han quedado pegadas, producen una bajada del rendimiento también considerable. En este caso, las pérdidas de eficiencia se cifran entre un 25% y un 40% sobre el nominal de los colectores fotovoltaicos.

Esta variación en el rendimiento se ve afectada por el tipo de panel o la tecnología sobre la que se ha fabricado. Por ejemplo, los de doble celda pueden verse menos afectados si las manchas se centran en una de las partes.

3. Polvo, suciedad normal

El polvo de la polución y la arenilla que arrastra el viento, se va acumulando poco a poco sobre la superficie de los paneles solares. Este va reduciendo la eficiencia de las placas fotovoltaicas. Así, la disminución de la producción eléctrica puede variar, oscilando entre un 4% y un 7%. Por eso, limpiar los paneles fotovoltaicos ayuda a mantener la eficiencia de estos.

Métodos de limpieza de los paneles fotovoltaicos

La limpieza de los paneles solares es fácil en sí, ya que no se necesitan grandes conocimientos ni reviste complejidades técnicas. El único problema o dificultad que pueden revestir es su ubicación. Cuando las placas solares están instaladas en una terraza transitable o sobre el suelo, donde podemos acceder con facilidad, no hay problema.

Sin embargo, cuando las placas se instalaron sobre un tejado a cierta altura, y la inclinación del tejado hace difícil estar sobre él, la dificultad aumenta. En estos casos, es recomendable acudir a empresas especializadas en hacer este tipo de trabajos. Por lo general son empresas de trabajos verticales, ya que disponen de elementos de seguridad para los trabajadores, como arneses que se anclan a las líneas de vida de los tejados. Además, los profesionales saben que no deben pisar los paneles solares.

Limpieza de placas solares de forma manual

Para hacer una limpieza de placas solares de forma manual necesitamos cinco sencillos utensilios o materiales:

  • Un cubo con agua tibia
  • Una gota de jabón neutro, pero sin que se produzca espuma, puesto que la espuma se puede convertir en suciedad si no la retiramos por completo y de forma correcta
  • Un trapo suave de fibras, que no pueda rallar el cristal del panel solar
  • Nos podemos ayudar de una pértiga para llegar a todas las esquinas de los colectores
  • Una pequeña escalera de mano

Desde Hogarsense aconsejan que esta limpieza se realice 4 veces al año. Tres de ellas las podemos hacer nosotros mismos, y una cuarta que la ejecute una empresa especializada en fotovoltaica, cuando proceda al mantenimiento de las placas solares.

Limpieza de placas solares con robot

robots para limpiar paneles solares

La limpieza de placas solares con robot es una alternativa que evita los riesgos de algunas tareas para las personas, es decir, caídas y accidentes. Bien, podemos adquirir un robot para nuestras instalaciones fotovoltaicas, si estas son relativamente grandes. O bien podemos acudir a una empresa fotovoltaica que haga tareas de mantenimiento que disponga de este servicio.

El uso de un robot limpiador asegura una limpieza de gran calidad y mucho más rápida. Los expertos dicen que la limpieza con robots es hasta 16 veces más rápida que de forma manual. Además, algunos de estos robots están diseñados y preparados para trabajar en seco, de modo que no se necesita una instalación con agua para la limpieza.

Limpieza de placas solares con dron

El empleo de drones se está generalizando para multitud de tareas, de hecho, ya no existe casi ningún oficio al exterior que no aproveche esta nueva herramienta. De momento son pocas las empresas de fotovoltaica que los usan para tareas de control y mantenimiento. Sin embargo, poco a poco, muchas empresas adquirirán drones para ejecutar tareas de mantenimiento y limpieza.

Limpieza de placas solares con gran herramienta

tractores para limpiar placas solares

En el caso de huertas solares, donde la cantidad de paneles puede ser fácilmente de miles, se hace necesario acudir a grandes herramientas para agilizar el proceso de limpieza. En estos casos podemos ver soluciones adaptadas a pequeños camiones, tractores o incluso en helicóptero.

Inversor solar: características y funciones

Cuando hablamos de una instalación de placas fotovoltaicas podemos llegar a pensar que basta con conectar los paneles a la red eléctrica. Lo cierto es que, entre los paneles solares y el electrodoméstico de consumo final, existen dispositivos tan importantes como el inversor solar. Se podría decir que es el corazón de nuestra instalación, incluso el cerebro. Ya que si los paneles captan la energía, sin el inversor no se podría transformar al voltaje de uso doméstico. Es decir, un sistema no podría funcionar sin el otro. A continuación veremos cómo funcionan los inversores, dónde se instalan y qué características tienen.

¿Qué es un inversor solar?

El inversor solar es el equipo encargado de transformar la corriente eléctrica continua en corriente eléctrica alterna. Convierte la energía que producen los paneles solares en energía de uso doméstico y así poderla utilizar en nuestros electrodomésticos o en la iluminación de la vivienda. Además, los inversores fotovoltaicos más recientes permiten monitorizar la producción y los consumos de electricidad. De esta forma podemos optimizar los rendimientos máximos de las placas solares y tener un mejor control del consumo energético de la vivienda.

Seguramente ya te habrás dado cuenta de que los inversores solares son el cerebro y corazón de la instalación solar. Si bien el corazón del cuerpo humano es el encargado de distribuir la cantidad correcta de sangre por todo el cuerpo, el inversor recibe la energía, la convierte y la distribuye por los diferentes dispositivos de la vivienda. Ya sea para consumirla, cargar las baterías o incluso verterla a la red eléctrica. Midiendo así todo lo que ocurre en la instalación, controlando la intensidad y tensión que producen las placas solares y detectando si aparece algún problema.

¿Qué tipos de inversores fotovoltaicos existen?

Previamente podemos adelantar que cuando buscamos un inversor solar encontraremos que todos tienen la misma función básica para la transformación energética. Sin embargo, están fabricados con diferentes tecnologías y funciones complementarias. Además la elección de este vendrá influida por el tipo de sistemas fotovoltaico compatible si se requiere un funcionamiento óptimo. Veamos que tipos de inversores existen y en que se diferencian:

Micro-inversor. Este inversor de menor tamaño esta pensado para convertir la corriente eléctrica que genera un solo panel solar. De esta manera se puede conectar cada micro-inversor a cada placa fotovoltaica en caso de que se requiera individualizar los consumos. Con esta modalidad podemos llevar un seguimiento individual de cada panel solar y calcular el rendimiento pico. También es cierto que el precio total de la instalación en conjunto será mayor.

Inversor solar híbrido. El inversor solar híbrido es ideal tanto para instalaciones conectadas a la red como en instalaciones aisladas. Se programa para inyectar energía a la red y almacenar la energía producida en baterías. A modo de garantía estos dispositivos optimizan la energía generada, creando un equilibrio de ahorro energético.

Inversor solar ‘String’ o cadena. Este inversor es uno de los más conocidos en el mercado ya que se utiliza en instalaciones de paneles fotovoltaicos conectados en serie. Son conocidos como inversores en cadena y algunas de sus ventajas son el bajo precio de coste y el fácil mantenimiento.

Optimizador de potencia. Este sistema es la versión reducida del inversor solar String. Consigue combinar las características de un micro-inversor con la conectividad de un inversor en cadena. Se instalan de manera individual en la parte trasera del panel solar y envían la electricidad a un inversor central tipo String (tipología de conexión estrella). Su principal función es minimizar las pérdidas del sistema de energía solar fotovoltaico. Con este sistema se optimiza el rendimiento de una instalación, haciéndolos más eficientes que los inversores de cadena. Además, no son tan caros como otros inversores.

Módulos inteligentes o Smart modules. Estos inversores son la evolución de los optimizadores de potencia y también se encuentran integrados de manera individual detrás de cada placa solar. Consiguen aumentar la productividad ofreciendo ventajas de fácil instalación y costes reducidos. Son aptos para todo tipo de paneles solares y garantizan a seguridad en la instalación. Esto se debe a que los módulos trabajan con voltajes bajos y por esa razón no existe el riesgo de producir una descarga eléctrica. Sin embargo, el coste de estos módulos inteligentes es mayor en comparación a otros inversores solares como el String.

Otros tipos de inversores. En el mercado encontramos algunos tipos de inversores más con otras funciones y de diferentes fabricantes que facilitan la instalación al cliente final. Entre los más destacados encontramos los inversores-cargadores o el regulador de carga cuya función es proteger las baterías de sobrecargas y garantizar un uso correcto. Y entre los inversores más nuevos encontramos diseños domóticos que permiten controlar aun más los consumos energéticos en base a nuestra experiencia en la vivienda. Deciden en que momento suministrar la electricidad para el consumo del hogar.

¿Qué características debe cumplir un inversor solar?

El inversor solar no solo es un convertidor de energía eléctrica sino que también nos aporta otras características importantes a nuestra instalación:

Características Beneficios
Optimización de la instalación Si elegimos un buen inversor podemos optimizar la producción solar. Podemos sacar mayor rendimiento y tener un mejor control del consumo de la instalación para no derrochar energía y emplear la necesaria en los momentos de mayor demanda
Asegurar la potencia máxima El inversor debe ser capaz de transformar toda la energía que produzcan los paneles fotovoltaicos. Para ello es fundamental que la potencia de transformación sea máxima para obtener toda la capacidad posible
Proporcionar protección Otra de las misiones que tiene el inversor solar es proteger la instalación de posibles problemas fotovoltaicos. En caso de que se detecte un corto circuito, caída de la red o fallo de algún componente se debe parar la producción eléctrica
Registrar y monitorizar la instalación Registrar y controlar el consumo es importante para tener un historial de consumos del que se puede optimizar el funcionamiento. La electricidad generada nos permitirá verificar el correcto funcionamiento de nuestra instalación. Y en su caso, solucionar el problema que pueda surgir

¿Qué potencia debe tener el inversor solar?

La elección del inversor vendrá acorde con la magnitud de potencia que tenga el sistema fotovoltaico. Serán los instaladores quienes, tras previo estudio, puedan determinar la potencia que podrá soportar el inversor solar. Por ejemplo, si vamos a instalar un sistema de 5 kW, para cubrir todas nuestras necesidades energéticas, necesitaremos un inversor solar también de 5 kW. Sin embargo, si nuestra intención es instalar un sistema de 4 kW y en el futuro aumentamos de potencia, lo más recomendable es pensar en un inversor de mayor capacidad. De esta forma podrá absorber la producción futura.

¿Qué precio tienen los inversores solares?

Por lo general, los inversores solares pueden variar por diferentes aspectos. Entre ellos, la calidad o funciones del inversor, la potencia de salida o, si trabaja en monofásica o trifásica. Partiendo de este punto podemos encontrar inversores fotovoltaicos con precios desde los 400 hasta los 1800 €. Los micro-inversores quedarían fuera de este rango. Son más económicos, pero necesitamos uno por cada placa solar.

Energía solar: Horas de luz solar

España es uno de los países que más disfruta del sol en el mundo a lo largo del año. Concretamente nos beneficiamos alrededor de unos 300 días al año de luz y calor de manera gratuita. Claro que no siempre con la misma intensidad, ni durante el mismo tiempo durante las diferentes estaciones. Pero sí que podemos sentirnos afortunados en relación a otros países del norte de Europa en los que la media de días disminuye considerablemente. Ahora bien, si disponemos de una gran cantidad de luz, ¿por qué no sacar el máximo rendimiento de ella? Si nuestra idea es instalar placas solares térmicas o fotovoltaicas, debemos estar bien informados. Podemos comenzar valorando que cantidad de luz solar llega a nuestra vivienda y cuantas horas podemos aprovecharla.

¿A qué países afecta más la luz solar?

Evaluar que zonas son más potenciales para aprovechar la energía solar y convertirla en calor o electricidad es un tema que se habla en todas las cumbres energéticas a nivel global. En el planeta se observa una distribución bastante regular de horas de luz solar, desde los polos donde existe menos radiación solar hasta zonas desérticas y tropicales donde se concentran más horas de luz solar. Por ejemplo, la zona del desierto del Sáhara en Níger alcanza valores de 3.800 horas de luz al año mientras que el norte de Laos y Vietnam, a pesar de estar a la misma latitud, apenas llegan a las 2.200 horas de luz solar anual. O en EE.UU., la zona del desierto de Nevada tiene alrededor de 4.000 horas de luz solar al año mientras que en Carolina del Sur, llegan a las 2.600 horas al año.

A nivel global se analiza, no solo que zonas cuentan con un gran número de horas de luz solar al año, sino también donde se puede sacar mayor aprovechamiento energético. El modelo energético que se quiere obtener plantea como imprescindible la utilización de la captación solar para el aprovechamiento de la energía solar en industrias o autoconsumo. Los objetivos para el 2030, simula que 2/3 de la población mundial pueda abastecerse de la energía fotovoltaica. Y para el 2100 el 70% de la energía mundial sea de origen solar. Esto visualiza un horizonte energético muy sostenible para todo el planeta.

¿Qué zonas de España tienen más horas de luz?

España tiene una situación privilegiada, respecto a otros países del norte, ya que la cantidad de radiación solar es muy favorable. Depende mucho de la ubicación geográfica, la climatología y de la latitud y longitud. Aunque todos sabemos que los inviernos en España tienen menos horas de sol y en verano muchas más, el abastecimiento de energía solar puede ser unos de los puntos fuertes. No solo para almacenarla sino también para transportar grandes cantidades de electricidad sin muchas pérdidas energéticas. Por lo cual, podemos aprovechar los beneficios que nos aportan tanto las placas solares térmicas como fotovoltaicas.

En algunas zonas con mayor incidencia como las provincias de Murcia, Sevilla, Alicante, Badajoz, Almería, Islas canarias o Baleares, se puede sacar una gran productividad ya que disponen de muchas horas de luz. Pero esto no significa que todas las provincias tengan las mismas cantidades anuales. Además no es sencillo determinar a qué hora sale el sol y a qué hora se pondrá en las diferentes épocas del año. De hecho, para medir la cantidad de sol se utiliza un instrumento llamado heliógrafo.

Los datos que nos aporta el heliógrafo revelan que en zonas del norte como Cantabria, País Vasco, Galicia y alto Ebro los valores oscilan sobre las 1.600 – 2.000 horas de sol al año. Por lo cual, amortizar un sistema de energía solar en estas zonas lleva más tiempo. Por otro lado, en las zonas más bajas al sur de España como Mallorca, Menorca, Islas Canarias o Ibiza si llegan a valores de 2.800. En estas zonas, la rentabilidad es mayor. Además, en zonas medias también podemos encontrar grandes cantidades de hora de luz. Por ejemplo en la zona de Madrid, alrededor de 2.700 horas al año y en la Comunidad Valenciana hasta 2.600 horas.

¿Funcionan los paneles solares con pocas horas de luz?

Esto es una duda que muchas personas tienen cuando se plantean instalar paneles solares en su vivienda. La respuesta tiene muchos matices pero es sencilla. Sí, los paneles solares pueden funcionar en la etapa de invierno aunque esté nublado. Los días soleados son los más ideales, pero no son imprescindibles para seguir obteniendo rendimiento solar. Incluso cuando el sol no da directamente a las placas solares, estas pueden cargar energía igualmente. Lo hacen con cualquier tipo de luz, aunque sea artificial. Atraen diversas longitudes de ondas, incluso aquellas que consiguen atravesar las nubes. ¿Nunca te has quemado la piel en un día nublado?

Beneficios del uso de luz solar

Beneficios Energía solar Fotovoltaica Energía solar Térmica
Coste e inversión Inversión inicial un poco elevada pero se puede amortizar en un periodo de 5 a 7 años Inversión media-alta y se consigue amortizar en un periodo de 7 a 8 años
Ahorro Se consigue un ahorro al utilizar como combustible gratuito la energía solar
Eficiencia Gran eficiencia energética al transformar la luz del sol en electricidad Eficiencia energética muy alta, pero con consumo de electricidad para su funcionamiento
Medio ambiente No genera residuos en su funcionamiento
Consumo No consume energía en su funcionamiento y consigue almacenar electricidad Consumo muy poca energía para mover los fluidos caloportadores
Mantenimiento Si se mantienen limpias de manera periódica pueden funcionar correctamente mucho tiempo No requieren mucho mantenimiento pero se deben revisar periódicamente para evitar estancamientos