Resultados de la búsqueda para: suelo radiante

Suelo radiante frío, un sistema total

¿Conoces el suelo radiante frío? Es un sistema que aporta calor en invierno y frío en la época estival.

¿Cómo funciona el suelo radiante refrescante?

La climatización radiante suele asociarse a un gran número de ventajas (eficiencia, alimentación fácil por fuentes de energía renovable, menor potencia requerida para climatizar, etc.). El principio básico del funcionamiento del suelo radiante frío es igual al modo de invierno, es decir, en calefacción. La única diferencia es que los equipos de suelo radiante frío hacen circular agua fría por sus circuitos para enfriar la superficie. De esta forma, el suelo se refrigera a una temperatura inferior a la temperatura ambiente del espacio a climatizar y emana frío.

Además, este tipo de instalaciones son perfectamente compatibles con múltiples tipos de superficie (parqué, cerámica, mármol, etc.). Aunque siempre deben evitarse aquellos materiales que sean buenos aislantes térmicos. El motivo es muy sencillo: el suelo radiante está instalado dentro del hormigón del suelo; si encima ponemos un aislante le costará más salir y realizar su función. Tanto sea para dar calor como para dar frío.

¿Cómo funciona el sistema completo?

Para funcionar como suelo radiante refrescante hay que tener en cuenta que al refrescar el suelo y por tanto la estancia, aumenta la humedad relativa, y por encima de unos limites no es confortable. Por eso es aconsejable controlar el grado de humedad relativa para que no supere el 75% HR como máximo. El sistema tendrá que estar en posición verano, y los termostatos funcionarán con las consignas de confort programados. Para que este modo de funcionamiento sea efectivo, los ciclos de trabajo tienen que ser largos. De tal modo que el edificio se mantenga fresco, y así aprovechar la inercia del edificio. No es posible refrescar la vivienda con ciclos cortos de tiempo como si fuera aire acondicionado.

Cuando uno o varios termostatos demandan enfriamiento, la bomba de calor comienza a enfriar agua en el depósito de inercia a una temperatura que determina la máquina. Lo hace en función de la temperatura exterior y una curva de trabajo configurada por el usuario. A su vez, acciona la bomba de circulación hacia el suelo radiante y las válvulas de dos vías correspondientes a los circuitos del suelo radiante que se observan en el dibujo. De esta manera, el agua fría circula por los circuitos de suelo radiante correspondientes.

¿Con cuánto rendimiento térmico cuenta el suelo radiante frío?

Cada instalación de calefacción por suelo es potencialmente una instalación de refrigeración. Sin embargo, es importante valorar con atención los parámetros técnicos que diferencian la vivienda a climatizar del suelo radiante. De hecho, en este sistema el suelo es el elemento que intercambia calor y frío con el ambiente y con las personas, por lo tanto, según la composición y las características del revestimiento (madera o cerámica), se obtendrán resultados térmicos diferentes.

Para hacer una comparativa del comportamiento de los diferentes tipos de suelos, se mide el calor sensible (calor seco) absorbido por un suelo radiante con diferentes medidas de separación entre pasos de tubería. No debemos olvidar que el sistema de refrigeración por suelo tiene que ser integrado con un oportuno sistema de deshumidificación del aire.

¿Qué beneficios tiene contar con un suelo radiante frío?

  1. Comodidad en verano y en invierno: al poder funcionar tanto en frío como en calor. No necesitamos de dos tipos diferentes de instalación.
  2. Funcionamiento silencioso: son una alternativa silenciosa que favorece un reparto uniforme del frío. Los equipos que se suelen utilizar para la generación de agua fría son bombas de calor, que cada día son más silenciosas.
  3. Ausencia de corrientes de aire: al ser una climatización por superficie radiante se evitan las corrientes de aire frío. Así, los usuarios no se ven expuestos de forma directa a ellas. Además, al eliminarse el movimiento de aire se evita también el desplazamiento de polvo u otros alérgenos.
  4. Ahorro energético: es una fuente de refrigeración de bajo consumo. Al demandar una menor potencia que otros sistemas para refrigerar, se considera que contribuye al ahorro energético de la instalación. Son compatibles con fuentes de energía muy eficientes como la aerotermia.
  5. Más higiene y salud: los sistemas radiantes no utilizan corrientes de aire, por lo que no mueven polvo, ni lo inyectan desde equipos exteriores, por lo que se favorece la higiene, y la prevención o no perjuicio por alergias.
  6. Libertad de decoración: muchos la definen como “invisible”. Todos los circuitos se hayan debajo de la superficie, por lo que la estética de la instalación no se ve afectada en absoluto.
  7. Los costes de mantenimiento suelen reducidos: para un sistema por refrescamiento radiante, se necesitan equipos capaces de generar frío. Estos son casi exclusivamente las bombas de calor. Sistemas que al no ser sistemas que utilicen combustibles fósiles apenas necesitan revisiones. Además, la ley no obliga a realizar inspecciones periódicas, y el mantenimiento en general es mucho menor.

Suelo radiante para aplicaciones urbanas

Orígenes del suelo radiante: por qué surge y cuál es el objetivo

¿Cómo funciona?

Antes de hablar de los orígenes del suelo radiante, conviene recordar qué es y cómo funciona. Llamamos suelo radiante, al sistema de calefacción que emplea el suelo de un local o superficie como emisor de calor. Pero también mencionar que el emisor puede ser cualquiera de los paramentos de los locales a calefactar (suelo, paredes o techo), aunque lo más corriente es emplear el suelo. Y su funcionamiento se basa en aportar calor (o frío) al material que forma el suelo, generalmente hormigón, haciendo que este eleve su temperatura y la mantenga durante un periodo largo de tiempo. Dada la extensión superficial del emisor se emplean bajas temperaturas, porque la emisión depende de la diferencia de temperaturas entre el emisor y el ambiente, y de la superficie del emisor (a mayor superficie de emisión será necesaria una diferencia de temperaturas menor). Algunas normativas limitan esta temperatura del suelo a 28 o 29 ºC.

Existen dos tipos principales de suelo radiante, el de agua y el eléctrico. El de agua se construye a base de tuberías que recorren todo el subsuelo y por las cuáles circula el agua que hemos calentado o enfriado previamente. Y que es la que le aporta al hormigón esa diferencia de temperatura que queremos trasladar luego al ambiente. El eléctrico también se instala en el suelo embebido en el hormigón, pero se diferencia en dos cosas.  La primera es que solo es capaz de producir calor, ya que lo que se instala es un cable eléctrico que es básicamente una resistencia que trasforma la corriente eléctrica en calor por efecto Joule. Y la segunda es que por su naturaleza no utiliza ningún fluido, solo corriente eléctrica. Y por ello no necesita de ningún generador, de calor o frío para el agua como es el caso del anterior.

En realidad, el suelo radiante puede funcionar también con solados de madera o moqueta, pero no resulta razonable tener un emisor térmico con su superficie cubierta por un aislante térmico. Lo que ocurrirá es que el sistema funcionará con más lentitud, obligando a que el calor tenga que traspasar la barrera aislante. Lo ideal es utilizar superficies que tengan buena conductividad térmica.

Orígenes y desarrollo

El origen del suelo radiante lo podemos encontrar en la antigua roma, cuando el ingeniero romano Cayo Sergio Orata diseñó, en el siglo I antes de Cristo, un sistema de calefacción que se emplearía con éxito en las termas romanas. Dados los buenos resultados de este invento, también se empleo con posterioridad en muchas casas de Patricios Romanos. Los restos más antiguos de este ingenio se han encontrado entre las ruinas de la ciudad de Olimpia y datan de la misma época que su presunto inventor. Dicho sistema recibe el nombre de hipocausto, y consistía en un horno desde el que se canalizaban los gases calientes resultantes de su combustión.

Este calor fluía a través de las canalizaciones que se encontraban bajo el suelo del edificio que se quería calentar. Al ser las baldosas y ladrillos de los que estaban construidos los suelos buenos conductores del calor, el resultado era un ambiente cálido y uniforme en el interior de la estancia. Se sabe que empleaban leña en el horno de combustión, y se calcula que la temperatura máxima alcanzada por esta calefacción no superaría los 30 ºC. También se aprovechaba el horno donde se quemaba la leña, para calentar en grandes tinas de cobre el agua que se utilizaría en los baños.

En Corea, la calefacción radiante por suelo radiante se utiliza desde hace unos 2.000 años. El concepto Ondol, que significa «piedra caliente», consiste en la utilización de piedras y conductos subterráneos para ayudar a transportar el aire caliente de la cocina a las habitaciones de la casa. La mayoría de las casas y edificios en Corea todavía usan ondol, aunque ahora usan agua caliente y sistemas eléctricos. Viajando a la época moderna encontramos a principios del siglo XX al arquitecto americano Frank Lloyd Wright, que descubrió ondol y lo utilizó en muchos de los edificios que diseñó. Además, también fue el inventor del sistema de agua caliente bajo el suelo de las viviendas.

Ciudades en las que se encuentran este tipo de sistemas de calefacción

Centrándonos más concretamente en las instalaciones en el exterior, las aplicaciones urbanas del suelo radiante se encuentran en la calefacción, y más concretamente, en la gran mayoría de los casos, para evitar la acumulación de nieve o hielo en calles, algunas carreteras y por supuesto en estadios de fútbol u otros deportes. Y es evidente, que este tipo de instalaciones se ejecutan en latitudes que sufren inviernos muy rigurosos, principalmente en los países nórdicos europeos y en el extremo sur de América, en zonas de Argentina.

Europa

Así encontramos algunos ejemplos en Islandia, lugar en que se encuentran numerosos yacimientos de aguas termales. En su capital, Reikiavik, las calles se congelan con facilidad en los meses de más frío. Para evitar resbalones y otros peligros se ha instalado calefacción por suelo radiante en diversas calles de la ciudad, evitando que se forme hielo. Otro ejemplo en Europa lo encontramos en Finlandia, donde varias ciudades disponen de suelo radiante en algunas calles. En este país nórdico son varias las ciudades que tienen escondido bajo su asfalto suelo radiante. Entre ellas su capital Helsinki o Joensuu, lo tienen instalado bajo sus calles más comerciales.

Otro ejemplo de calefacción por suelo radiante en el exterior son los recintos deportivos. Algunos deportes son negocios muy importantes y atraen a grandes cantidades de personas, llegando al punto en que la suspensión de partidos por nieve y hielo es un riesgo financiero considerable. Además de las ventajas en la práctica al poderse celebrar los partidos y los entrenamientos durante todo el año y el menor riesgo de que los jugadores se lesionen, por ello una calefacción de césped resulta también económicamente rentable. La Federación alemana del fútbol define la calefacción de césped en los estadios de primera división de la liga federal como estándar. Y ya existen más de 170 estadios equipados con calefacción de césped. Los tubos colocados debajo de las raíces del césped mantienen el campo de juego libre de heladas.

Un ejemplo lo encontramos en el Estadio de fútbol “Rhein Neckar Arena”, en la localidad de Sinsheim, conocida en Alemania por su “Museo del Coche y la Técnica”, y que tiene ahora una nueva atracción. El Estadio Rhein Neckar Arena, para el que se construyó expresamente la vía de acceso “Sinsheim Süd”. El estadio es el campo del equipo de fútbol TSG Hoffenheim y ha sido construido con ayudas y financiación privada.

Por último tenemos el ejemplo de la utilización del suelo radiante en grandes zonas comerciales o sistema de calefacción y refrescamiento por suelo radiante para naves industriales, como el supermercado Penny del Grupo REWE en Colonia-Bocklemünd, donde se invirtió en un centro logístico de más de 15.000 m² de superficie, aunque no es específicamente una instalación exterior. En la nave de almacén de gran superficie, sometida en algunas zonas a elevadas cargas puntuales, se ha instalado una calefacción industrial por superficies radiantes. Este rentable sistema de calefacción combina grandes exigencias al material con un rango de temperaturas, costes operativos y de inversión bajos. Las superficies que no es necesario calefactar, por ejemplo, los puntos de almacenaje y las estanterías de gran altura, que simplemente no se han tenido en cuenta al hacer el diseño y desarrollar el proyecto.

Sudamérica

Un ejemplo en el que se han aprovechado sus aguas termales naturales para instalar un sistema de calefacción por suelo radiante en la población es Copahue, una pequeña villa de la provincia de Neuquén, en Argentina. El sistema se inauguro en el año 1999 y con ello, se ha conseguido hacer el duro invierno mucho más amable para sus habitantes y visitantes. El informe de Feinmann sobre “veredas calefaccionadas” en el Sur de Argentina, criticaba estas instalaciones debido a que se alimentaban con calderas de gas. Quedando testimonio de su instalación en algunas zonas del sur del país.

¿Y en España en particular?

En nuestro país, encontramos el municipio de Salardú, que acoge la estación de esquí de Baqueira Beret, donde se ha colocado calefacción en un par de calles de la población. El objetivo de estas instalaciones es garantizar la movilidad en invierno en dos calles propensas a provocar colapsos cuando se hielan. Estas dos calles son muy transitadas en invierno (sobretodo por los esquiadores que visitan la estación de Baqueira Beret) y se provocan importantes colapsos por culpa del hielo. En especial, en la calle de Estudis que tiene una fuerte pendiente y que conecta la carretera C-28 con el acceso a Bagergue y Unha. Este sistema es muy caro, tanto en su instalación como en su mantenimiento y funcionamiento, y que por este motivo, solo se ha instalado la calefacción en lugares «concretos y determinados».

Varios estudios demuestran los grandes beneficios que conlleva la instalación de calefacción de suelo radiante para evitar catástrofes. Y su utilidad es aún mayor en aeropuertos o puentes, por ejemplo. En este sentido, otra de las aplicaciones que se está estudiando es para las pistas de aterrizaje de los aeropuertos, donde se han realizado las primeras placas de hormigón a escala real que en su interior son conductoras de electricidad para el pavimento exterior de los aeropuertos, llevadas a cabo en la Universidad del Estado de Iowa por el profesor Halil Ceylan, con el objetivo que los aviones aterricen sin problemas y que no se salgan de las pistas por el hielo.

Conectividad en el hogar para ahorrar

La conectividad es la clave para el ahorro en el consumo de toda la vivienda

Hoy en día en casi todos los hogares hay algún electrodoméstico o equipo conectado. Las smart tv y las lavadoras son los más comunes, pero los frigoríficos, aires acondicionados y otros equipos de calefacción empiezan a tener también conexión inteligente. Esta conectividad es la clave para ahorrar en el consumo de toda la vivienda.

Según un estudio realizado en España, el 70 % de las personas desconoce las grandes ventajas que aporta la conectividad de los electrodomésticos y, sobre todo, cuando hablamos de climatización, la instalación de un control modulante de la temperatura.

Evolución de la conectividad en la climatización

Hace apenas un par de décadas la conectividad era algo desconocido. A finales del siglo pasado empezaban a instalarse pequeños sistemas conectados a la línea telefónica, que servían para activar la caldera de gas o gasoil. Se utilizaba en segundas residencias para activar la calefacción unas horas antes de la llegada de los usuarios. De esta forma, al llegar, la casa ya estaba caliente. Aunque no se podía controlar nada más, ni la temperatura ni las zonas de la casa a climatizar.

Con el paso de los años y la mejora de los sistemas electrónicos y de comunicación, se han ido implementando sistemas que activaban mediante elementos mecánicos cualquier cosa en la vivienda. Se podían bajar y subir las persianas, abrir o cerrar las cortinas, abrir o retirar el toldo, etc. Sin embargo, no había un control real ni autónomo de los electrodomésticos.

Únicamente con la llegada de la comunicación inalámbrica y la domótica han empezado a diseñarse equipos con electrónica de comunicación incorporada. Así, ya disponemos en el mercado de equipos de aire acondicionado con sistemas de detección de personas y posibilidad de comunicación, bombas de calor con conectividad, robots-aspiradoras y otros muchos electrodomésticos que se conectan a la red WiFi para compartir información sobre su situación, y que un ordenador pueda tomar decisiones y actuar sobre todos ellos.

Ahorro en la climatización de los hogares

Hoy en día se han desarrollado sistemas que se pueden integrar fácilmente en las nuevas viviendas, aunque también se ha pensado en las casas ya construidas. Así, para el control de equipos de calefacción por radiadores tradicionales o suelo radiante, se han diseñado válvulas termostáticas inteligentes. Estas posibilitan el control de la temperatura de cada habitación, pudiendo variarla en cualquier momento. De esta forma, no solo se consigue un gran confort, sino que también se aseguran ahorros en la factura energética.

En viviendas de nueva construcción o reformadas, se pueden instalar sistemas de gestión que controlan todo dentro de la vivienda; especialmente lo relacionado con la climatización. Así, los controladores modulares para sistemas de calefacción y climatización son el complemento para un mayor ahorro energético y económico.

La imagen tiene un atributo ALT vacío; su nombre de archivo es cabezales-termostaticos-inteligentes-1024x682.png

Gracias este tipo de dispositivos, se pueden controlar mejor los sistemas de climatización y permiten a los usuarios un mejor ajuste de las temperaturas de cada estancia, de forma más eficiente y personalizando las preferencias de calefacción o refrigeración de cada persona. A pesar de ello, cerca del 70% de los usuarios desconocen que, con estos dispositivos, el ahorro de las facturas de energía de una vivienda se puede reducir hasta en un 30 %.

Teniendo en cuenta que la factura energética de una vivienda tipo es de media de 1.800 € anuales, un 30 % de ahorro suponen 450 € menos que se pagan. Lo que asegura que solo en un año se puede ahorrar el coste de estos dispositivos de regulación y control.

La conectividad es la clave para el ahorro en el consumo de toda la vivienda

El último avance es el concepto llamado “Internet de las cosas”, con el cual casi cada electrodoméstico está conectado a una red interna de la vivienda. así se confirma que la conectividad es la clave para el ahorro en el consumo de toda la vivienda. De esta forma, podemos saber en cada momento y en tiempo real en qué estado está cada uno de los equipos que disponen de un sistema de comunicación y pertenecen a la red que disponemos en nuestras viviendas.

Aunque para un mayor ahorro, los equipos que más nos interesa tener conectados son los de mayor consumo. De forma que se controle su puesta en marcha en momentos adecuados para que el consumo pueda ser absorbido por la electricidad más barata. Además, de controlar adecuadamente las temperaturas de la calefacción, el aire acondicionado, el agua de la lavadora y el lavavajillas, para asegurar un confort y una limpieza adecuada, con un gasto energético menor, lo que supondrá un coste más bajo en la factura de la luz.

Por otro lado, estos ahorros pueden ser casi del 100 % cuando se une a la red de gestión de los equipos de la vivienda un sistema de paneles solares fotovoltaicos. De esta forma el sistema de gestión aprovecha la conectividad para usar la electricidad generada por la instalación solar en los electrodomésticos de mayor consumo como la bomba de calor, la lavadora y el lavavajillas, y que podemos programar para que trabajen independientemente de nuestras actividades.

Bomba de calor híbrida para la climatización

Bomba de calor híbrida para la climatización

La bomba de calor ha sido designada por muchas instituciones y organismos como el sistema de climatización del futuro, aunque ya lo es en el presente. La obligación que tenemos de ir eliminando los combustibles fósiles de nuestras vidas, para dejar de contaminar y no depender de los países productores de gas, petróleo o carbón, está ayudando a los equipos de aerotermia. Sin embargo, hay fabricantes que ha decidido ofrecer una alternativa intermedia y han creado un sistema híbrido. Pero, ¿qué es realmente una bomba de calor híbrida?

Entendemos por bomba de calor híbrida al equipo que combina una máquina de aerotermia con un sistema auxiliar que la ayuda a proporcionarnos climatización y agua caliente sanitaria. De forma que se consideran un conjunto que cubre todas nuestras necesidades en la vivienda.

La combinación entre la aerotermia y otros sistemas tradicionales mejora la aportación de climatización, reduciendo el consumo, o lo que es igual, aumentando la eficiencia energética. Así, podemos encontrar bombas de calor preparadas para trabajar con una caldera de gas independiente; otras que integran en un mismo equipo las dos tecnología, y un tercer grupo de máquinas de aerotermia que se integran con el sistema fotovoltaico.

Hay dos grandes motivos que justifican la hibridación de la bomba de calor, el primero es el aprovechamiento del sol para suministrar la energía eléctrica que consume la aerotermia. De esta forma se convierte en un equipo 100% ecológico y renovable. El segundo motivo es por la climatología.

• Bomba de calor híbrida con fotovoltaica

Con los sistemas de calefacción tradicionales era habitual la instalación de paneles solares térmicos, sin embargo, con una bomba de calor, cuyos combustibles son la electricidad y el aire del exterior, lo lógico es vincularla con un sistema fotovoltaico.

De este modo, hay fabricantes que han integrado en la bomba de calor un kit de conexión y comunicación con el inversor fotovoltaico. De esta manera, ambos equipos se comunican y se pueden programar para que la bomba de calor trabaje cuando hay un exceso de producción eléctrica. Así, el equipo de aerotermia aprovechará el exceso de energía para calentar o enfriar el agua del depósito de inercia destinado a la climatización.

Esa agua queda preparada para cuando los termostatos demanden calefacción o refrigeración, actuando como una batería de agua a temperatura deseada. De este modo, estamos aprovechando al 100% las energías renovables para la climatización de nuestra vivienda. Teniendo en cuenta que la bomba de calor es capaz de generar toda la climatización, aprovechando hasta el 75% de la energía térmica del aire, y con el 25% restante de electricidad, que en este caso es de origen solar renovable.

• Hibridación con solar térmica

Realizar una instalación de bomba de calor híbrida con energía solar térmica era una opción que se realizaba con frecuencia hace un par de décadas. En aquellos momentos la fotovoltaica aún era demasiado cara para instalaciones residenciales. Por ese motivo se acudía a un apoyo en la generación directa de agua caliente. Sin embargo, esta combinación tenía un hándicap; al llegar la primavera y la bomba de calor trabaja en modo verano, la producción de agua caliente seguía y se necesitaba disipar ese calor generado, fuera de la vivienda.

En cambio, al abaratarse las instalaciones fotovoltaicas de autoconsumo, este sistema ha sustituido casi por completo a la solar térmica. El motivo es obvio, cuando la bomba de calor deja de trabajar, la electricidad que se sigue generando puede ser utilizada en otros electrodomésticos, en la iluminación, (almacenada en una batería física o virtual) para aprovecharla durante la noche.

• Hibridación con caldera de gas

La aplicación de integrar una bomba de calor con una tradicional caldera de gas está pensada para climas más rigurosos y en función de la temperatura de agua que se necesita. De modo que, a muy bajas temperaturas, cuando la bomba de calor pierde rendimiento, es la caldera de gas la que se activa y trabaja para generar calefacción. Cuando las temperaturas exteriores empiezan a ser más suaves, es cuando entra a trabajar la bomba de calor.

También se puede regular la bomba de calor híbrida en función del sistema de radiación del calor. Es decir, en viviendas con radiadores tradicionales la caldera de gas trabajará durante más tiempo. En cambio, si el sistema es un suelo radiante, la bomba de calor trabajará apenas las temperaturas exteriores estén superen los -5 °C.

Así, podemos resumir en dos condicionantes la decisión de unir ambas tecnologías en un único equipo:

  • La temperatura de suministro a emisores (desde 40 °C a 85 °C), así como las necesidades térmicas de la instalación.
  • Las condiciones climáticas de trabajo para la unidad exterior. Esto viene afectado por la zona climática y las temperaturas más extremas que se pueden dar en cada lugar.
Bomba de calor híbrida con caldera

Hogarsense.es

caldera microondas

Calefacción con una caldera de microondas

¿Cómo funciona la caldera de microondas? Una pregunta que surge a muchos ante ante la novedad de este tipo de calderas. Los investigadores y empresas no cesan los trabajos para buscar alternativas al gas y, como hemos visto con lo sucedido en la guerra de Ucrania, Europa es demasiado dependiente de terceros países en cuestiones energéticas. Por ello muchas personas trabajan para solucionarlo y la caldera de microondas es un ejemplo más.

Desgraciadamente, esta novedad solo está disponible en el mercado inglés, de momento. La empresa británica Heat Wayv lleva trabajando en este proyecto ya varios años. El resultado de ello son dos modelos de caldera que lamentablemente no podemos solicitar en nuestro país.

Esta empresa ha desarrollado dos versiones de su patente. Un modelo mural, con unas dimensiones parecidas a la tradicional caldera de gas. Por lo que muchos expertos consideran que puede ser su sustituto natural. La caldera mural de microondas se ha diseñado para adaptarse a cualquier sistema de calefacción, de modo que podamos sustituir cualquier caldera o bomba de calor que tengamos instalada.

Por otro lado, han diseñado otro modelo de caldera con depósito incorporado de 280 litros. Este modelo está pensado para viviendas más grandes y con un consumo de agua caliente y calefacción más elevado. Aunque para instalar este tipo de calderas tendremos que esperar un par de años mínimo.

¿Cómo funciona un sistema con microondas?

Ya que la base del funcionamiento de la caldera de microondas son precisamente este tipo de ondas electromagnéticas, conviene conocer cuál es su mecanismo de funcionamiento y como pueden calentar el agua.

Estas ondas se encuentran en el rango entre los 300 MHz y los 300 GHz en el espectro de ondas. Son un tipo de ondas de radiofrecuencia, englobadas en las UHF o de muy alta frecuencia. Las aplicaciones de las microondas son muy variadas. Se utilizan en los sistemas de telecomunicaciones u ondas de radio.

Aunque también se está usando para el diseño de nuevas armas de inmovilización y otras aplicaciones industriales. Sin embargo, la herramienta que más conocemos todos nosotros y que usa esta tecnología es el horno de microondas. Un electrodoméstico que tiene un hueco en casi todos los hogares.

Vibración producida por las microondas

El proceso de calentamiento se basa en la vibración que las microondas producen en las moléculas de agua. Ese movimiento caótico que se produce en el agua produce fricción entre el agua y el resto de componentes de la comida, lo que lleva a un calentamiento interno de los alimentos.

En cambio, si intentamos utilizar el horno microonda con otros materiales, este proceso no se realiza. Y en caso extremo de los metales, que tienen una estructura físico-química mucho más estable y rígida, puede ser peligrosa. Ya que las microondas rebotan en el material, pudiendo retornar al emisor de las ondas. En estos casos se producen chispazos que pueden provocar un incendio o incluso una pequeña explosión.

¿Cuál es el funcionamiento de la caldera de microondas?

Aunque la empresa que ha implementado la tecnología de las microondas para la calefacción no ha dado detalles de su funcionamiento interno, si ha desvelado algunos datos. Así, la caldera de microondas funciona en dos etapas. En la primera se realiza un precalentamiento del agua de unos 24°C. En un segundo proceso se eleva la temperatura hasta los 65 °C.

Esta temperatura sería suficiente para usarla en un suelo radiante, en fancoils o en radiadores de baja temperatura. Sin embargo, es una temperatura insuficiente para funcionar con los tradicionales radiadores de aluminio o acero, ya que estos necesitan el que el agua llegue a 85 °C.

Según la empresa fabricante, se utilizan ondas de muy alta frecuencia como generador de calor en el agua que pasa por la zona del emisor de ondas. Según sus pruebas, garantizan un rendimiento del 84% en sus fases de emisión de microondas. No obstante, aseguran que la caldera se ha diseñado para poder aprovechar un 12% de la energía residual en forma de calor que se genera en todo el proceso.

Además, según la propia empresa, el proceso es tan rápido como en una caldera de gas, por lo que no hay una pérdida de confort con respecto a estas calderas.

Beneficios e inconvenientes de la caldera por microondas

La tecnología de las microondas adaptada a una caldera de calefacción eléctrica presenta algunas ventajas bastante claras, aunque también algunos inconvenientes.

VentajasDesventajas
✓ Combina con todos los sistemas de difusión del calor; radiadores, fancoils, suelo radiante, etc.❌ Funciona con electricidad, más cara que el gas.
✓ Combinada con un sistema fotovoltaico de autoconsumo ayuda a reducir el consumo eléctrico.❌ No puede considerarse con huella de carbono nula, a menos que esté alimentado por electricidad verde.
✓ Al ser una calefacción eléctrica no produce emisiones de humos contaminantes.❌ Actualmente en etapa de pruebas en Inglaterra.
✓ Al no tener partes móviles ni realizar ninguna combustión es muy silenciosa.
✓ El montaje de una caldera eléctrica es relativamente sencillo, al no necesitar ventilación ni salida de humos.
✓ No se necesita realizar obras y aprovecha las tuberías para distribución de la calefacción ya existentes.
✓ Los trabajos de revisión y mantenimiento de la caldera son muy básicos y sencillos.
✓ Se puede controlar desde el Smartphone o conectada a la domótica de la vivienda –
Ventajas y desventajas de la caldera de microondas