Archivos por Etiqueta: energía eléctrica

¿Conoces la diferencia entre kW, kWp y kWh?

Últimamente, hemos sufrido un gran incremento en el precio de la electricidad y no paramos de oír noticias sobre la eficiencia energética, las instalaciones fotovoltaicas y su potencia, y otro tipo de información. Sin embargo, muchas personas se confunden cuando se habla de energía, potencia, trabajo y sus unidades de medida. Pero, ¿cómo reconocerlos y diferenciarlos?, ¿conoces la diferencia entre kW, kWp y kWh?

Primero tenemos que conocer qué es el trabajo, la energía y la potencia; definirlos y entender qué implica cada uno de ellos. De este modo veremos cuál es la relación entre estos tres conceptos y cómo se pasa de uno a otro.

¿Qué es el trabajo en términos físicos?

El trabajo es la acción por el que un objeto o materia cambia de estado, es decir, es el proceso por el que al aplicar una fuerza sobre un cuerpo este adquiere energía. En otras palabras, es la fuerza necesaria para que un objeto se desplace con una aceleración determinada. Por ejemplo, cuando golpeamos un balón y se pone en movimiento.

Definición de trabajo

En términos matemáticos se define al trabajo como la multiplicación de una fuerza por la distancia recorrida por el objeto al que se ha aplicado dicha fuerza.

¿Qué es la potencia eléctrica?

La potencia eléctrica es la cantidad de energía eléctrica que es transferida o absorbida por unidad de tiempo por un elemento determinado. Es decir, es la proporción en que la energía eléctrica es transferida en un momento determinado a través de circuito eléctrico. La unidad en que se mide la potencia eléctrica en el sistema internacional es vatio o Watt, y se simboliza por una W.

Como ejemplo para entender el funcionamiento de la potencia eléctrica tenemos cualquier equipo que use electricidad para funcionar. Así, podemos observar que al hacer circular una corriente eléctrica por un circuito, se puede transferir energía cuando se realiza un trabajo mecánico o en energía termodinámica.

De esta forma, los diferentes electrodomésticos o equipos eléctricos son capaces de transformar la energía eléctrica en otro tipo de energía, en función de su potencia. En este caso, podemos definir la potencia como la capacidad para ejecutar un trabajo.

Sin embargo, esa transformación de la energía por ser en muchas formas de energía:

Energía inicialElemento conversor de energíaForma fina de energía
Energía eléctricaLámpara de incandescencia o LEDLuz
Calefactor eléctrico de resistenciaCalor
Motor eléctricoMovimiento
AltavozSonido
Batería de plomo ácidoAlmacenamiento, proceso químico

¿Qué es la potencia pico en fotovoltaica?

Las instalaciones solares fotovoltaicas disponen de dos componentes diferentes que vienen definidos por la potencia y son capaces de generar o transformar la energía. El primero de ellos son los propios módulos solares que transforma la luz del sol en electricidad. Según su tecnología y tamaño podemos tener paneles solares de 350 Wp, 400 Wp o incluso 500 Wp, según indique el fabricante en la ficha técnica del panel en cuestión.

Así, al realizar una instalación de generación eléctrica se instalan muchos de estos paneles, siendo la potencia de varios kWp o incluso MWp. Pero, ¿qué significa vatio pico? Al diseñar e instalar un conjunto de placas solares fotovoltaicas, obtenemos una potencia total, no obstante, es una potencia teórica que se consigue cuando las condiciones son las óptimas.

Al fabricar los paneles fotovoltaicos se les hace una prueba de funcionamiento en la propia fábrica. Estas pruebas se realizan con lámparas que proyectan una cantidad de luz determinada, además, el laboratorio donde se realizan las pruebas mantiene una temperatura determinada. Es por ello que se las llama condiciones STC (Standar Test Condition).

Condiciones STC o Condición Estándar del Test:

  • Irradiancia: es la potencia de la radiación solar, que se establece en 1.000 W/m2.
  • Temperatura: es la temperatura de la célula fotovoltaica, no del ambiente, y es de 25 ºC.
  • Masa de aire: es un parámetro que indica cuánta atmósfera debe atravesar la radiación, este parámetro varía en función del lugar, el día y la hora. En la STC se establece una masa de aire de 1,5.

Lógicamente, cuando se instalan esos paneles en un tejado, donde la irradiación no es casi nunca de 1.000 W/m2 y la temperatura ambiente variará constantemente. Es por ello que la potencia eléctrica que genere el panel será por lo general inferior a la indicada por el fabricante con las condiciones STC. Es por ese motivo que se dice que es una potencia pico, es decir, la potencia máxima que puede generar el panel en las condiciones óptimas.

potencia pico - potencia nominal

¿Qué es la potencia nominal en fotovoltaica?

La potencia nominal de una instalación solar es la que marca el inversor. Este equipo es el encargado de convertir la electricidad en corriente continua que generan los módulos fotovoltaicos, a corriente alterna, similar a la que hay en la red de distribución eléctrica. De forma que limita la potencia que puede entregar a consumo toda la instalación fotovoltaica.

Es decir, aunque se hayan montado muchos paneles con una potencia conjunta de 10,5 kWp, pero el inversor es de 10 kWn, solo se entregarán a la red o a consumo hasta 10 kW eléctricos. Es por ello que los técnicos en energía solar deben conjugar muy bien la cantidad de paneles solares. Y conseguir que la potencia pico instalada en módulos sea algo superior a la potencia nominal del inversor, pero no en exceso.

¿Por qué diferenciar entre kWp y kWn?

El motivo por el que siempre se instalan más kWp que kWn es por lo ya explicado. Los paneles solares tienen una potencia máxima, pero desgraciadamente no todos los días tenemos un sol magnífico, ya que suele haber alguna nube, suciedad, polvo, etc. Además, en muchas ocasiones no se pueden instalar los paneles con la inclinación y orientación óptima. Sin olvidar que la tierra se mueve y la posición relativa del sol va cambiando a lo largo del día.

Todo esto hace que la producción de los paneles solares sea inferior a su máximo teórico. Y, por eso mismo, el ingeniero que realice los cálculos, debe dimensionar el campo de módulos solares un poco más grande que el propio inversor. De modo que en términos medios la potencia pico de los paneles se aproxime a la potencia nominal del inversor.

potencia pico vs potencia nominal

Diferencia entre kW y kWh

Hasta ahora hemos hablado del trabajo que realiza un motor eléctrico o una persona al mover un objeto; también de la potencia que generan los paneles solares y la que transforman los inversores, que se mide con W o kW. Sin embargo, no hemos definido qué es la energía eléctrica y la relación con la potencia.

Bien, la energía eléctrica es la que se origina cuando se genera una diferencia de potencial entre dos puntos de un circuito eléctrico. Cuando esos dos puntos se unen, se genera una corriente eléctrica que circula desde el punto con mayor potencial al de menor. Es decir, un punto tiene una tensión de 230 V (voltios) y el otro no tiene (0 V).

Al establecerse una corriente eléctrica, se hace patente la energía eléctrica que se transmite en el circuito en un periodo de tiempo determinado. Así, la potencia va en función de la tensión y la intensidad de corriente:

Potencia eléctrica = Diferencia de tensión * Intensidad de corriente eléctrica
P (W) = V (v) * I (A)

En cambio, cuando hablamos de un periodo, por ejemplo, una hora, esa potencia ha generado una cantidad de energía durante ese tiempo. En el caso de una instalación fotovoltaica que genere 6 kW eléctricos de forma constante durante una hora, tenemos que ha generado una energía de 6 kWh.

De esta manera, indicamos la potencia que un equipo, motor o estación generadora es capaz de generar, en función de su diseño, hablando de kW. Por ejemplo, la potencia de una planta generadora de solar fotovoltaica tiene una potencia de 105 kWp en el campo de captadores solares y una potencia de 98 kWn de inversor.

Energía (kWh). Por otro lado, cuando ese equipo, motor o huerta solar empieza a funcionar, trabaja o es capaz de aportar una parte de su capacidad de forma instantánea. Sin embargo, no nos interesa la potencia que genera en un momento determinado, sino, más bien, la energía que nos entrega durante un día o a lo largo de un año.

Es entonces cuando hablamos de energía y la valoramos en términos horarios: “la planta solar ha generado 75 kWh durante el último año”. Siendo este dato una media de toda la energía que ha generado.

Componentes de una instalación solar

Cada uno de los componentes es imprescindible en la instalación y tienen su importancia a la hora de aprovechar la radiación del sol, captando la energía solar y transformándola en energía eléctrica. Conozcamos a continuación cuáles son estos componentes.

1. Modulo fotovoltaico

Es el encargado de convertir la energía  del sol en energía eléctrica. Es el elemento principal de la instalación fotovoltaica. Está formado por la unión de varios paneles y dota a la instalación de la potencia necesaria. Cuanto mayor sea la demanda, mayor número de paneles solares serán necesarios. Estos están formados por células de silicio, que se encuentran encapsuladas y conectadas entre sí eléctricamente.

Según la tecnología de fabricación de las células, los módulos fotovoltaicos son monocristalinos, policristalinos o amorfos. Este último tipo está en desuso debido a su poca eficiencia en comparación con los otros dos.

2. Regulador de carga

Entre los paneles solares (campo fotovoltaico) y las baterías, nos encontramos el regulador de carga. Es el nexo de unión entre ellos y el resto de los componentes fotovoltaicos. Los reguladores se encargan de administrar la energía con eficiencia. Permiten que el sistema y las baterías no se sobrecarguen y evita que se puedan descargar por la noche. También es capaz de proporcionar información del estado del sistema, Controla constantemente el estado de carga de las baterías, por lo que ayuda a prolongar la vida útil de las mismas. Gracias a estos componentes fotovoltaicos, nos aseguramos que haya suministro eléctrico suficiente.

3. Batería o acumulador 

Las baterías cumplen tres funciones en una instalación solar fotovoltaica:

  • Almacenar la energía durante un período de tiempo
  • Proporcionar potencia instantánea elevada
  • Fijar la tensión de trabajo de la instalación.

Una vez regulada la energía eléctrica de los paneles, se va a las baterías. La energía del sol no llega de manera uniforme, si no que depende de aspectos como la duración del día, de las estaciones del año o de la nubosidad en un momento determinado. Por ello se hace necesario utilizar algún sistema que pueda almacenar esta energía para utilizarla en momentos que no llegue la radiación solar, como son las baterías o acumuladores. Las baterías se recargan gracias al regulador de carga, desde la electricidad que producen los paneles solares.

4. Inversor

Elemento imprescindible en una instalación solar fotovoltaica. El inversor se encarga de convertir la corriente continua en alterna o convencional, que debe ser igual a la de la red eléctrica. Es decir, de convertir la energía que recogen las placas solares en electricidad. Si no es por el inversor, no podríamos usar la energía que producen los paneles. Una vez la energía es transformada por el inversor, podremos utilizarla, verterla a la red o almacenarla en las baterías. A continuación recogemos las características principales del inversor solar:

  • Alta eficiencia
  • Consumo bajo cuando no hay cargas conectadas
  • Alta fiabilidad
  • Seguridad y protección contra cortocircuitos
  • Buena regulación de la tensión y de la frecuencia de salida 

5. Soportes

Estos componentes tienen una mera función de fijación. Son elementos pasivos. Los soportes mantienen los paneles solares en una posición fija proyectados hacia el sur. Estos soportes deberán ser estables, rígidos y duraderos para poder soportar el desgaste que conlleva el estar en el exterior: clima, fuerza del viento, nieve, lluvia, etc

Otros componentes fotovoltaicos 

Los microinversores y los optimizadores de potencia son otros elementos solares que podemos necesitar en una instalación solar fotovoltaica. Los primeros se instalan justo detrás de los paneles solares para transformar la corriente continua que le llega de los paneles en corriente alterna, Se distingue de un inversor en el tamaño, que es mucho más pequeño, y en que opera a nivel individual en cada placa solar. Podría decirse que es un pequeño inversor individual de cada panel. El optimizador también trabaja individualmente en cada panel solar,  pero en vez de transformar la corriente continua como sí lo hace el micro inversor, optimiza y maximiza esa corriente antes de enviarla al inversor central.

Con estos elementos, logramos tener un mayor rendimiento y una monitorización individual de los paneles. No obstante, tanto los microinversores como los optimizadores de potencia no son imprescindibles en una instalación fotovoltaica.

Kit solar fotovoltaico 

Un kit solar fotovoltaico está compuesto por los distintos componentes que hemos visto antes: panel solar, batería, regulador de carga e inversor. Son fáciles de instalar y requieren de poco mantenimiento. Por ejemplo, donde no exista conexión a la red eléctrica, como en las zonas rurales, es de gran utilidad. Además, si fuera necesario aumentar la potencia, solo necesitaríamos instalar más paneles fotovoltaicos. Además, la vida útil de los kits solares fotovoltaicos es muy larga.

Mantenimiento de una instalación solar fotovoltaica

En lo que respecta al mantenimiento, para evitar el deterioro de la instalación, es recomendable realizar un buen mantenimiento. Y es que aspectos como los agentes externos, las variaciones de temperatura, la polución o suciedad son factores que afectan directamente a este tipo de instalaciones. Por eso debemos tener claro que es lo que podemos hacer para evitar esto:

  • Eliminar el polvo o suciedad acumulado en el campo fotovoltaico. Para ello utilizaremos productos no abrasivos y siguiendo siempre las recomendaciones de los fabricantes.
  • Realizar una inspección visual para detectar cualquier problema o anomalía.
  • Revisar la estructura. Ver que no haya grietas o deformaciones. Aplicar un tratamiento anticorrosivo en el caso de que la estructura sea de aluminio o acero inoxidable.
  • Revisar los componentes eléctricos.
  • Revisar el sistema de acumulación. Hablamos de las baterías, de los bornes y de los terminales de conexión. En el caso de que hiciese falta, tendremos que rellenar los electrolitos de las baterías, hasta llegar al nivel recomendado.

Si conseguimos  realizar un buen mantenimiento en las instalaciones solares fotovoltaicas obtendremos beneficios como: ahorro en el consumo, mayor vida útil de los paneles, mayor eficiencia, menor número de averías, control de bacterias, etc.